早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an},其前n项和为Sn.(1)若{an}是公差为d(d>0)的等差数列,且{Sn+n}也为公差为d的等差数列,求数列{an}的通项公式;(2)若数列{an}对任意m,n∈N*,且m≠n,都有2Sm+nm+n=am+an+am-an

题目详情
已知数列{an},其前n项和为Sn
(1)若{an}是公差为d(d>0)的等差数列,且{
Sn+n
}也为公差为d的等差数列,求数列{an}的通项公式;
(2)若数列{an}对任意m,n∈N*,且m≠n,都有
2Sm+n
m+n
=am+an+
am-an
m-n
,求证:数列{an}是等差数列.
▼优质解答
答案和解析
(1)根据题意得:an=a1+(n-1)d,Sn=na1+
n(n-1)
2
d,
Sn+n
=
n(a1+
n-1
2
d+1)
成等差数列,公差为d,
Sn+n
=dn,
a1+1-
d
2
=0
d
2
=d

解得:d=
1
2
,a1=-
3
4

则an=
1
2
n-
5
4

(2)令m=2,n=1,则
2S3
3
=2a2,即
a1+a2+a3
3
=a2
整理得:a1+a3=2a2,即a1,a2,a3成等差数列,
下面用数学归纳法证明{an}成等差数列,
假设a1,a2,…,ak成等差数列,其中k≥3,公差为d,
则令m=k,n=1,
2Sk+1
k+1
=ak+a1+d,
∴2Sk+1=(k+1)(ak+a1+d)=k(ak+a1)+a1+ak+(k+1)d=2Sk+a1+ak+(k+1)d,
∴2ak+1=a1+ak+(k+1)d=2(a1+kd),即ak+1=a1+kd,
∴a1,a2,…,ak,ak+1成等差数列,
则对于一切自然数,数列{an}是等差数列.