早教吧作业答案频道 -->数学-->
已知数列an满足a1=1,an-2a下标(n-1)-2*(n-1)=0,(n∈N*,n≥2)(1)求证:数列an/2*n是等差数列;(2)若数列an的前n项和为Sn,求Sn.
题目详情
已知数列an满足a1=1,an-2a下标(n-1)-2*(n-1)=0,(n∈N*,n≥2)
(1)求证:数列an/2*n是等差数列;
(2)若数列an的前n项和为Sn,求Sn.
(1)求证:数列an/2*n是等差数列;
(2)若数列an的前n项和为Sn,求Sn.
▼优质解答
答案和解析
答:
数列A1=1,An-2A(n-1) -2^(n-1)=0
1)
An-2A(n-1)=2^(n-1)
两边同时除以2^n得:
An /2^n -A(n-1) /2^(n-1)=2^(-1)=1/2
所以:数列{An /2^n}是等差数列,公差d=1/2
2)
根据1)可以知道,{An /2^n}是公差为d=1/2,首项A1 /2=1/2的等差数列
所以:
An /2^n=A1 /2 +(n-1)d=1/2+(n-1)*(1/2)=n/2
所以:
An=(n/2)*(2^n)=n*2^(n-1)
Sn=A1+A2+...+An=1*2^0+2*2^1+3^2^2+4*2^3+..;..+n*2^(n-1)
两边同时乘以2:
2Sn=1*2^1+2*2^2+3^2^3+4*2^4+..;..+n*2^n
以上两式错位相减(同次数项相减)得:
-Sn=1+2^1+2^2+2^3+.+2^(n-1) -n*2^n
=(2^n -1) /(2-1) -n*2^n
=2^n -1-n*2^
所以:
Sn=(n-1)*2^n +1
数列A1=1,An-2A(n-1) -2^(n-1)=0
1)
An-2A(n-1)=2^(n-1)
两边同时除以2^n得:
An /2^n -A(n-1) /2^(n-1)=2^(-1)=1/2
所以:数列{An /2^n}是等差数列,公差d=1/2
2)
根据1)可以知道,{An /2^n}是公差为d=1/2,首项A1 /2=1/2的等差数列
所以:
An /2^n=A1 /2 +(n-1)d=1/2+(n-1)*(1/2)=n/2
所以:
An=(n/2)*(2^n)=n*2^(n-1)
Sn=A1+A2+...+An=1*2^0+2*2^1+3^2^2+4*2^3+..;..+n*2^(n-1)
两边同时乘以2:
2Sn=1*2^1+2*2^2+3^2^3+4*2^4+..;..+n*2^n
以上两式错位相减(同次数项相减)得:
-Sn=1+2^1+2^2+2^3+.+2^(n-1) -n*2^n
=(2^n -1) /(2-1) -n*2^n
=2^n -1-n*2^
所以:
Sn=(n-1)*2^n +1
看了 已知数列an满足a1=1,a...的网友还看了以下:
已知数列(An)的前n项和为Sn满足.Sn=3╱2An+n-3求证,数列(A已知数列(An)的前n项 2020-03-30 …
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足 2020-03-30 …
已知数列{an}和{Bn}满足a1=2 an-1=an(an+1-1) bn=an-1 n∈N+已 2020-05-15 …
已知函数f(x)满足:对任意实数m,n都有f(m+n)=f(m)+f(n)-1已知函数f(x)满足 2020-05-17 …
已知√98n是整数,则n的最小整数是;已知√98n+147是整数,则n=;已知√98n+147是整 2020-06-08 …
已知n∈N,数列{dn}满足dn=[3+(-1)的n次方]/2,数列{an}满足an=d1+d2+ 2020-07-09 …
已知m.n为正整数,实数x,y满足x+y=4(√x+m+√y+m)若x+y的最大值40,则m+n= 2020-07-26 …
已知函数f(x)=x/x+1,若数列{an}满足a1=1,an+1=f(an),设数列{cn}满足 2020-07-29 …
已知数列an满足条件,a1=2,a2=3,2an+1=3an-an-1(n大于等于2证明an-1已 2020-08-03 …
已知各项均大于1的等差数列{an}前n项和为Sn且满足6Sn=an2+3an+2(n∈N+),数列{ 2020-11-19 …