早教吧作业答案频道 -->数学-->
设f(x)在[0,1]上连续,且定积分∫[0,1]f(x)dx=6,求∫[0,1]dx∫[1,x]f(x)f(y)dy
题目详情
设f(x)在[0,1] 上连续,且定积分∫[0,1]f(x)dx=6,求∫[0,1]dx∫[1,x]f(x)f(y)dy
▼优质解答
答案和解析
设F'(x)=f(x),则
∫[0,1]dx∫[1,x]f(x)f(y)dy
=∫[0,1]f(x)dx∫[1,x]f(y)dy
=∫[0,1]f(x)[F(x)-F(1)]dx
=∫[0,1]f(x)F(x)dx-F(1)∫[0,1]f(x)dx
=F(x)^2/2 |[0,1]-6F(1)
={F(1)-F[0]}{F(1)+F(0)}/2-6F(1)
=3F(1)+3F(0)-6F(1)
=-18
∫[0,1]dx∫[1,x]f(x)f(y)dy
=∫[0,1]f(x)dx∫[1,x]f(y)dy
=∫[0,1]f(x)[F(x)-F(1)]dx
=∫[0,1]f(x)F(x)dx-F(1)∫[0,1]f(x)dx
=F(x)^2/2 |[0,1]-6F(1)
={F(1)-F[0]}{F(1)+F(0)}/2-6F(1)
=3F(1)+3F(0)-6F(1)
=-18
看了 设f(x)在[0,1]上连续...的网友还看了以下:
f(x)是定义在(-3,3)的减函数,在区间(-3,3)任意数有f(x)+f(y)=f(x+y),且 2020-03-30 …
设z=f(x,y),且f(x,x^2)=x^3+1,f'x(x,x^2)=x^2-2x^3,则f' 2020-05-13 …
f(x)+f(y)=2f[(x+y)/2]f[(x-y)/2],f(0)不等于,且存在非零常数c, 2020-05-14 …
设z=f(x/y),且f可微,求dz 2020-05-20 …
如果对任何实数,t,x,y都有f(tx,ty)=tf(x,y),且f(x,y)有界,求证f(x,y 2020-05-21 …
赋值法怎么用阿.我这有道题.请大家详细为我解析下.谢谢已知f(x)对任意实数x都有f(x+y)=f 2020-06-03 …
函数与其自己的反函数复合后等于x,怎么证明呢?假设f是g的反函数,于是对定义域内的x,存在y使得, 2020-06-08 …
设y=f(x)的反函数是x=ψ(y),且f(x)=∫1到2xe^(t方)dt+1,则ψ‘’(1)= 2020-07-10 …
证明:若f(x)+f(y)=f(x+y),且f(x)在0连续,则函数f(x)在R连续,且f(x)= 2020-08-02 …
已知函数满足f(x+y)=f(x)+f(y)+xy(x+y),且f'(0)=1.求f(x)的解析式 2020-11-01 …