早教吧作业答案频道 -->其他-->
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(Ⅰ)求a;(Ⅱ已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.
题目详情
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(Ⅰ)求a;(Ⅱ
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.
(Ⅰ)求a;
(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.
(Ⅰ)求a;
(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
▼优质解答
答案和解析
(Ⅰ)函数的导数f′(x)=3x2-6x+a;f′(0)=a;
则y=f(x)在点(0,2)处的切线方程为y=ax+2,
∵切线与x轴交点的横坐标为-2,
∴f(-2)=-2a+2=0,
解得a=1.
(Ⅱ)当a=1时,f(x)=x3-3x2+x+2,
设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4,
由题设知1-k>0,
当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
则h′(x)=3x2-6x=3x(x-2)在(0,2)上单调递减,在(2,+∞)单调递增,
∴在x=2时,h′(x)取得极小值h′(2)=0,
g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
∴g(x)>h(x)≥h(2)=0,
∴g(x)=0在(0,+∞)上没有实根.
综上当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
则y=f(x)在点(0,2)处的切线方程为y=ax+2,
∵切线与x轴交点的横坐标为-2,
∴f(-2)=-2a+2=0,
解得a=1.
(Ⅱ)当a=1时,f(x)=x3-3x2+x+2,
设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4,
由题设知1-k>0,
当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
则h′(x)=3x2-6x=3x(x-2)在(0,2)上单调递减,在(2,+∞)单调递增,
∴在x=2时,h′(x)取得极小值h′(2)=0,
g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
∴g(x)>h(x)≥h(2)=0,
∴g(x)=0在(0,+∞)上没有实根.
综上当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
看了 已知函数f(x)=x3-3x...的网友还看了以下:
若函数f(x)=x3-ax2+1在(0,2]内单调递减,求实数a的取值范围RT,我算到求导,f'( 2020-06-02 …
设f(x)在x=0的某领域内二阶可导,且limx→0(sin3xx3+f(x)x2)=0,求f(0 2020-06-12 …
微分方程y′″-y″=3x2的特解形式为()A.ax2+bx+cB.x(ax2+bx+c)C.x2 2020-07-31 …
下列分式中,最简分式是()A.a−bb−aB.a3+a4a2C.a2+b2a+bD.x−3x2−6 2020-08-02 …
I.计算:(x+3x2−3x-x−1x2−6x+9)÷x−9x.II.解分式方程:x−2x+2−1 2020-08-02 …
高等代数综合除法例分解因式3x5-3x4-13x3-11x2-10x-6∴原式=(x+1)(x+1 2020-08-02 …
适合用直接开平方法解题的是几个().1.1/3x2=12.(x-2)2=53.1/4(x+3)2= 2020-08-03 …
设f(x)=3x2+x2|x|,求使f(n)(0)存在的最高阶数k,并给出f(k)(x). 2020-10-31 …
已知函数f(x)=x-alnx+b,a,b为实数.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切 2020-11-01 …
若数据x1,x2,…,xn的平均数为.x,方差为s2,则3x1+5,3x2+5,…,3xn+5的平均 2021-01-01 …