早教吧作业答案频道 -->数学-->
分部积分法求∫x^2sin^2xdx,∫In^2xdx要过程
题目详情
分部积分法求∫x^2sin^2xdx,∫In^2xdx要过程
▼优质解答
答案和解析
∫x²sin²x dx
=(1/2)∫x²(1-cos2x) dx
=(1/2)∫x² dx - (1/2)∫x²cos2x dx
=(1/2)(1/3)x³ - (1/2)(1/2)∫x² d(sin2x)
=(1/6)x³ - (1/4)x²sin2x + (1/4)∫sin2x*2x dx
=(1/6)x³ - (1/4)x²sin2x - (1/2)(1/2)∫x d(cos2x)
=(1/6)x³ - (1/4)x²sin2x - (1/4)xcos2x + (1/4)∫cos2x dx
=(1/6)x³ - (1/4)x²sin2x - (1/4)xcos2x + (1/8)sin2x + C
∫(lnx)² dx
=x(lnx)² - ∫x*2lnx*1/x dx
=x(lnx)² - 2∫lnx dx
=x(lnx)² - 2xlnx + 2∫x*1/x dx
=x(lnx)² - 2xlnx + 2x + C
=(1/2)∫x²(1-cos2x) dx
=(1/2)∫x² dx - (1/2)∫x²cos2x dx
=(1/2)(1/3)x³ - (1/2)(1/2)∫x² d(sin2x)
=(1/6)x³ - (1/4)x²sin2x + (1/4)∫sin2x*2x dx
=(1/6)x³ - (1/4)x²sin2x - (1/2)(1/2)∫x d(cos2x)
=(1/6)x³ - (1/4)x²sin2x - (1/4)xcos2x + (1/4)∫cos2x dx
=(1/6)x³ - (1/4)x²sin2x - (1/4)xcos2x + (1/8)sin2x + C
∫(lnx)² dx
=x(lnx)² - ∫x*2lnx*1/x dx
=x(lnx)² - 2∫lnx dx
=x(lnx)² - 2xlnx + 2∫x*1/x dx
=x(lnx)² - 2xlnx + 2x + C
看了 分部积分法求∫x^2sin^...的网友还看了以下:
几道高数的作业,1.求曲线y=(x+2)(e^-1/x)的渐近线2.计算∫(e^-x)sin(2x 2020-05-13 …
求d(∫x*arcsin^2xdx)= 2020-06-02 …
为什么d(x^2)=2xdx呢?x^2的导数不是等于2x吗,怎么多了一个dx? 2020-06-10 …
∫x^3sin^2xdx 2020-06-13 …
∫x/sin^2xdx 2020-06-13 …
分部积分求x/cos^2xdx积分 2020-06-13 …
跪求高数题一道若f(x)=∫xe^2xdx求f'(x)希望提供解题步骤 2020-07-22 …
分部积分法求∫x^2sin^2xdx,∫In^2xdx要过程 2020-07-22 …
关于1/x的积分dy/y=2xdx∫dy/y=∫2xdxLn|y|=x^2+Cy=±exp(x^2 2020-07-23 …
∫xf(x)dx=e^2x+c求∫1/f(x)dx是这样的书上是通过分部积分的方法来做的,而我是直 2020-08-03 …