早教吧作业答案频道 -->数学-->
(2010•河源)如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆交x轴于E,D两点(D点在E点右方).(1)求点E,D的坐标;(2)求过B,C,D三点的抛物线的函数关系式;
题目详情
(2010•河源)如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆交x轴于E,D两点(D点在E点右方).
(1)求点E,D的坐标;
(2)求过B,C,D三点的抛物线的函数关系式;
(3)过B,C,D三点的抛物线上是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

(1)求点E,D的坐标;
(2)求过B,C,D三点的抛物线的函数关系式;
(3)过B,C,D三点的抛物线上是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

▼优质解答
答案和解析
(1)设以BC为直径的圆的圆心为M,由于⊙M过点D,由圆周角定理可得∠BDC=90°;即可证得△ABD∽△ODC,可用OD表示出DA,根据相似三角形得到的比例线段,即可求得OD的长,由此可得到点D、E的坐标;
(2)用待定系数法求解即可求出该抛物线的解析式;
(3)首先求出直线CD的解析式;由于CD⊥BD,且点C在抛物线的图象上,因此C点就是符合条件的Q点;同理可先求出过B点且平行于CD的直线l的解析式,直线l与抛物线的交点(B点除外)也应该符合Q点的要求.
【解析】
(1)取BC的中点M,过M作MN⊥x轴于N;则M点即为以BC为直径的圆的圆心;
∵点D是⊙M上的点,且BC是直径,
∴∠BDC=90°;
∴∠OCD=∠BDA=90°-∠ODC;
又∵∠COD=∠OAB,
∴△OCD∽△ADB;
∴
;
∵OC=3,AB=1,OA=OD+DA=4,
∴3×1=OD×(4-OD),
解得AD=1,OD=3;
∵点D在点E右边,
∴OD=3,OE=1;
即D(3,0),E(1,0);
(2)设抛物线的解析式为y=ax2+bx+c,(a≠0),依题意,
有:
,
解得
;
∴y=
x2-
x+3;
(3)假设存在这样的Q点;
①△BDQ以D为直角顶点;
由于CD⊥BD,且C点在抛物线的图象上,
所以C点符合Q点的要求;
此时Q(0,3);
②△BDQ以B为直角顶点;
易知直线CD的解析式为:y=-x+3;
作过B的直线l,且l∥CD;
设l的解析式为y=-x+h,由于l经过点B(4,1),
则有:-4+h=1,h=5;
∴直线l的解析式为y=-x+5;
联立抛物线的解析式有:
,
解得
,
;
∴Q(-1,6);
综上所述,存在符合条件的Q点,且Q点坐标为(0,3)或(-1,6).
(2)用待定系数法求解即可求出该抛物线的解析式;
(3)首先求出直线CD的解析式;由于CD⊥BD,且点C在抛物线的图象上,因此C点就是符合条件的Q点;同理可先求出过B点且平行于CD的直线l的解析式,直线l与抛物线的交点(B点除外)也应该符合Q点的要求.

(1)取BC的中点M,过M作MN⊥x轴于N;则M点即为以BC为直径的圆的圆心;
∵点D是⊙M上的点,且BC是直径,
∴∠BDC=90°;
∴∠OCD=∠BDA=90°-∠ODC;
又∵∠COD=∠OAB,
∴△OCD∽△ADB;
∴

∵OC=3,AB=1,OA=OD+DA=4,
∴3×1=OD×(4-OD),
解得AD=1,OD=3;
∵点D在点E右边,
∴OD=3,OE=1;
即D(3,0),E(1,0);
(2)设抛物线的解析式为y=ax2+bx+c,(a≠0),依题意,
有:

解得

∴y=


(3)假设存在这样的Q点;
①△BDQ以D为直角顶点;
由于CD⊥BD,且C点在抛物线的图象上,
所以C点符合Q点的要求;
此时Q(0,3);
②△BDQ以B为直角顶点;
易知直线CD的解析式为:y=-x+3;
作过B的直线l,且l∥CD;
设l的解析式为y=-x+h,由于l经过点B(4,1),
则有:-4+h=1,h=5;
∴直线l的解析式为y=-x+5;
联立抛物线的解析式有:

解得


∴Q(-1,6);
综上所述,存在符合条件的Q点,且Q点坐标为(0,3)或(-1,6).
看了 (2010•河源)如图,直角...的网友还看了以下:
一个带电小球从空中的M点运动到N点的过程中,重力做功0.3J,克服电场力做功0.1J.关于小球在M 2020-05-14 …
已知中心在原点的椭圆C的左焦点F(-3,0),右顶点A(2,0).(1)求椭圆C的标准方程;(2) 2020-05-15 …
如图,在平面直角坐标系中,已知A,B,C,三点的坐标分别为A(-2,0),B(6,0),C(0,3 2020-05-16 …
如图所示的装置中底座A上有长0.5m的直立杆,总质量为M=2kg,杆上套有质量为m=0.5kg的小 2020-05-17 …
(1)已知圆的方程为x的平方+y的平方-2x+2y=0,求圆的周长.(2)已知直...(1)已知圆 2020-06-08 …
一个质量为0.18kg的垒球,以25m/s的水平速度飞行球棒,被球棒打击后,反向水平飞出,速度的大 2020-06-25 …
已知圆C的方程为:X²+(y-4)²=1,直线l的方程为2x-y=0,点p在直线l上,过点P作圆C 2020-07-08 …
(理科)在平面直角坐标系中,F为抛物线C:x2=2py(p>0)的焦点,M为抛物线C上位于第一象限 2020-07-31 …
下列说法正确的是()A.若f(x)和g(x)在x=0点的某邻域无界,则limx→0f(x)g(x) 2020-07-31 …
一质点沿直线Ox方向做变速运动……它离开O点的距离x随时间变化的关系为x=5+2t的三次方,他的速 2020-07-31 …