早教吧作业答案频道 -->其他-->
下列说法正确的是()A.若f(x)和g(x)在x=0点的某邻域无界,则limx→0f(x)g(x)=∞B.若f(x)在x=0点的某邻域内有界,g(x)在x=0的某邻域无界,则f(x),g(x)在x=0点的某邻域
题目详情
下列说法正确的是( )
A.若f(x)和g(x)在x=0点的某邻域无界,则
f(x)g(x)=∞
B.若f(x)在x=0点的某邻域内有界,g(x)在x=0的某邻域无界,则f(x),g(x)在x=0点的某邻域一定无界
C.若f(x)和g(x)都在x=0点的某邻域有界,则f(x)+g(x)在x=0点的某邻域一定有界
D.若f(x),g(x)在x=0点的某邻域内都有界,则必有
f(x)g(x)=0
A.若f(x)和g(x)在x=0点的某邻域无界,则
lim |
x→0 |
B.若f(x)在x=0点的某邻域内有界,g(x)在x=0的某邻域无界,则f(x),g(x)在x=0点的某邻域一定无界
C.若f(x)和g(x)都在x=0点的某邻域有界,则f(x)+g(x)在x=0点的某邻域一定有界
D.若f(x),g(x)在x=0点的某邻域内都有界,则必有
lim |
x→0 |
▼优质解答
答案和解析
选项C正确.利用局部有界的定义.因为f(x)g(x)在x=0的某邻域有界,必存在M>0,
使|f(x)|<M,|g(x)|<M,所以|f(x)+g(x)|<|f(x)|+|g(x)|<2M.
A、B、D的反例:
A:取f(x)=g(x)=
,但是,对于任意正数k,取xk=
,均有f(xk)=g(xk)=0,从而f(xk)g(xk)=0.
B:取f(x)=x,g(x)=
,但f(x)g(x)=
为有界的.
D:取f(x)=g(x)=1为常数函数,均为有界的,但f(x)g(x)≡1.
综上,正确答案为C.
故选:C.
使|f(x)|<M,|g(x)|<M,所以|f(x)+g(x)|<|f(x)|+|g(x)|<2M.
A、B、D的反例:
A:取f(x)=g(x)=
|
1 |
kπ |
B:取f(x)=x,g(x)=
|
|
D:取f(x)=g(x)=1为常数函数,均为有界的,但f(x)g(x)≡1.
综上,正确答案为C.
故选:C.
看了 下列说法正确的是()A.若f...的网友还看了以下:
已知函数定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|≤m|x|则称其为F函数,则f( 2020-04-27 …
1.若y=f(x)的定义域是[0,2],则函数f(x+1)+f(2x-1)的定义域是(2.函数f( 2020-05-23 …
若f(x)在实数域内二阶可导,f(x)=-f(-x)且在0到正无穷内有f'(x)>0,f''(x) 2020-06-14 …
若f(x)在实数域内二阶可导,f(x)=-f(-x)且在0到正无穷内有f'(x)>0,f''(x) 2020-06-14 …
函数y=f(x)对定义域内的任意X都有f(a+x)=f(a-x),则y=f(x)的图像关于直线x= 2020-06-25 …
已知函数f(x)的定义域是负无穷小到0并0到正无穷大,并对定义域中任一x均有f(x).f(-x)= 2020-07-08 …
f(x)在x=0的邻域有二阶连续导数,f'(0)=f''(0)=0,则在x=0处,f(x)f(x) 2020-07-29 …
f(x)在点x=o的某一邻域内具有连续的二阶导数lim(x->0)f(x)/x=0f(x)在点x= 2020-07-31 …
高三数学题请各位朋友帮忙,下列两题实在解不出了1.已知函数f(x)是R上的偶函数,g(x)是R上的奇 2020-12-08 …
设函数f(x)={2^xx>0,x+1x小于等于0.若f(a)+f(1)=0,则实数a的值等于?1设 2020-12-08 …