早教吧作业答案频道 -->其他-->
下列说法正确的是()A.若f(x)和g(x)在x=0点的某邻域无界,则limx→0f(x)g(x)=∞B.若f(x)在x=0点的某邻域内有界,g(x)在x=0的某邻域无界,则f(x),g(x)在x=0点的某邻域
题目详情
下列说法正确的是( )
A.若f(x)和g(x)在x=0点的某邻域无界,则
f(x)g(x)=∞
B.若f(x)在x=0点的某邻域内有界,g(x)在x=0的某邻域无界,则f(x),g(x)在x=0点的某邻域一定无界
C.若f(x)和g(x)都在x=0点的某邻域有界,则f(x)+g(x)在x=0点的某邻域一定有界
D.若f(x),g(x)在x=0点的某邻域内都有界,则必有
f(x)g(x)=0
A.若f(x)和g(x)在x=0点的某邻域无界,则
| lim |
| x→0 |
B.若f(x)在x=0点的某邻域内有界,g(x)在x=0的某邻域无界,则f(x),g(x)在x=0点的某邻域一定无界
C.若f(x)和g(x)都在x=0点的某邻域有界,则f(x)+g(x)在x=0点的某邻域一定有界
D.若f(x),g(x)在x=0点的某邻域内都有界,则必有
| lim |
| x→0 |
▼优质解答
答案和解析
选项C正确.利用局部有界的定义.因为f(x)g(x)在x=0的某邻域有界,必存在M>0,
使|f(x)|<M,|g(x)|<M,所以|f(x)+g(x)|<|f(x)|+|g(x)|<2M.
A、B、D的反例:
A:取f(x)=g(x)=
,但是,对于任意正数k,取xk=
,均有f(xk)=g(xk)=0,从而f(xk)g(xk)=0.
B:取f(x)=x,g(x)=
,但f(x)g(x)=
为有界的.
D:取f(x)=g(x)=1为常数函数,均为有界的,但f(x)g(x)≡1.
综上,正确答案为C.
故选:C.
使|f(x)|<M,|g(x)|<M,所以|f(x)+g(x)|<|f(x)|+|g(x)|<2M.
A、B、D的反例:
A:取f(x)=g(x)=
|
| 1 |
| kπ |
B:取f(x)=x,g(x)=
|
|
D:取f(x)=g(x)=1为常数函数,均为有界的,但f(x)g(x)≡1.
综上,正确答案为C.
故选:C.
看了 下列说法正确的是()A.若f...的网友还看了以下:
[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)中的g(x)g‘(x)分别代表什么[ 2020-04-26 …
对于函数f(x)和g(x),若存在常数k,m,对于任意x∈R,不等式f(x)≥kx+m≥g(x)都 2020-05-13 …
1.已知f(x)与g(x)是定义R上的两个可导函数,若f(x)与g(x)满足f’(x)=g'(x) 2020-05-13 …
一次函数g(x)满足g[g(x)]=9x+8,则g(x)是()A.g(x)=9x+8B.g(x)= 2020-05-14 …
已知函数f(x)=x2-2ln|x|与g(x)=sin(x+ψ)(ω>0)有两个公共点,则在下列函 2020-05-16 …
高一必修一数学难题(奇偶)已知f(x)在R上是偶函数,在R上是奇函数的g(x)过点(-1.1),( 2020-05-16 …
,我知道答案是非奇非偶,就是不知道怎么解出来的.g(x)=2x+1 2020-05-22 …
在同一对应法则f下,f(x)中的x与f[g(x)]中的g(x)两者的范围应该是一致的?在同一对应法 2020-06-12 …
设函数列{fn(x)}与{gn(x)}在区间I上分别一致收敛于f(x)与g(x),且假定f(x)与 2020-06-23 …
分别做出一个函数f(x),g(x)满足:f(x),g(x)定义域为实数集R,f(x)在任意点不可导 2020-06-25 …