早教吧作业答案频道 -->数学-->
n*2^(n-1)+1是完全平方数;求自然数n
题目详情
n*2^(n-1)+1是完全平方数; 求自然数n
▼优质解答
答案和解析
n=5,5*2^4+1=5*16+1=81=9^2 !
由于 n*2^(n-1)+1 一定为奇数数,所以设这个完全平方数为 (2a+1)^2
(2a+1)^2 = n*2^(n-1)+1
4a^2+4a+1= n*2^(n-1)+1
4a^2+4a = n*2^(n-1)
4a(a+1) = n*2^(n-1)
a(a+1) = n*2^(n-3)
所以得到 n*2^(n-3) 可写成两个相邻自然数的乘积形式,那么可知其中一个自然数是个奇数,从这个奇数里,我们无法提取2的因子,所以那个偶数就应该提供2的因子,而且应该尽可能的多,所以我们就从2的次方数开始考虑
2*3,不符合
4*5,得到n为5
同时也可以从n为3开始试
现在论证唯一性.由于2^n的递增速度比a^2要快,所以这两条区线在自然数集中只能有一个交点.
over
由于 n*2^(n-1)+1 一定为奇数数,所以设这个完全平方数为 (2a+1)^2
(2a+1)^2 = n*2^(n-1)+1
4a^2+4a+1= n*2^(n-1)+1
4a^2+4a = n*2^(n-1)
4a(a+1) = n*2^(n-1)
a(a+1) = n*2^(n-3)
所以得到 n*2^(n-3) 可写成两个相邻自然数的乘积形式,那么可知其中一个自然数是个奇数,从这个奇数里,我们无法提取2的因子,所以那个偶数就应该提供2的因子,而且应该尽可能的多,所以我们就从2的次方数开始考虑
2*3,不符合
4*5,得到n为5
同时也可以从n为3开始试
现在论证唯一性.由于2^n的递增速度比a^2要快,所以这两条区线在自然数集中只能有一个交点.
over
看了 n*2^(n-1)+1是完全...的网友还看了以下:
A(n,n)=n(n-1)(n-2)……·3·2·1怎么理解麻烦写下过程c(2,3)c(1,4)= 2020-05-14 …
找一个函数对于整数自变量X1,X2,.,Xn,构造一个函数f(X1,X2,.,Xn),使得n个自变 2020-05-15 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数...若自然数 2020-05-16 …
求线性方程组X1+2X2+3X3+.+nXn=n(n+1)/2的通解写成基础解系加上特解的形式,我 2020-07-20 …
n为非0自然数,试证n^13n定能被2730整除.2730=2*3*5*7*13,n^13-n=n 2020-07-22 …
定义:设有限集合A={x|x=ai,i≤n,i∈N+,n∈N+},S=a1+a2+…+an-1+a 2020-08-01 …
设函数f1(x)=112x4+aex(其中a是非零常数,e是自然对数的底),记fn(x)=fn-1 2020-08-02 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …
下列词语中加点的字,读音全都正确的一组是()A.纤细(xiān)戏谑(xuè)心宽体胖(pán)鲜为 2021-01-15 …