早教吧作业答案频道 -->数学-->
设函数f1(x)=112x4+aex(其中a是非零常数,e是自然对数的底),记fn(x)=fn-1′(x)(n≥2,n∈N*)(1)求使满足对任意实数x,都有fn(x)=fn-1(x)的最小整数n的值(n≥2,n∈N*);(2)
题目详情
设函数f1(x)=
x4+aex(其中a是非零常数,e是自然对数的底),记fn(x)=fn-1′(x)(n≥2,n∈N*)
(1)求使满足对任意实数x,都有fn(x)=fn-1(x)的最小整数n的值(n≥2,n∈N*);
(2)设函数gn(x)=f4(x)+f5(x)+…+fn(x),若对∀n≥5,n∈N*,y=gn(x)都存在极值点x=tn,求证:点An(tn,gn(tn))(n≥5,n∈N*)在一定直线上,并求出该直线方程;(注:若函数y=f(x)在x=x0处取得极值,则称x0为函数y=f(x)的极值点.)
(3)是否存在正整数k(k≥4)和实数x0,使fk(x0)=fk-1(x0)=0且对于∀n∈N*,fn(x)至多有一个极值点,若存在,求出所有满足条件的k和x0,若不存在,说明理由.
1 |
12 |
(1)求使满足对任意实数x,都有fn(x)=fn-1(x)的最小整数n的值(n≥2,n∈N*);
(2)设函数gn(x)=f4(x)+f5(x)+…+fn(x),若对∀n≥5,n∈N*,y=gn(x)都存在极值点x=tn,求证:点An(tn,gn(tn))(n≥5,n∈N*)在一定直线上,并求出该直线方程;(注:若函数y=f(x)在x=x0处取得极值,则称x0为函数y=f(x)的极值点.)
(3)是否存在正整数k(k≥4)和实数x0,使fk(x0)=fk-1(x0)=0且对于∀n∈N*,fn(x)至多有一个极值点,若存在,求出所有满足条件的k和x0,若不存在,说明理由.
▼优质解答
答案和解析
(1)∵f1(x)=
x4+aex,fn(x)=fn-1′(x),
∴f2(x)=
x3+aex,f3(x)=x2+aex,f4(x)=2x2+aex,f5(x)=2+aex,
f6(x)=aex,f7(x)=aex,
∴使满足对任意实数x,都有fn(x)=fn-1(x)的最小整数n的值为7;
(2)gn(x)=f4(x)+f5(x)+…+fn(x)=(2x+2)+(n-3)aex,
∴gn′(x)=2+(n-3)aex,
∵y=gn(x)都存在极值点x=tn,
∴gn′(tn)=0,
∴gn(tn)=2tn,
∴点An(tn,gn(tn))在y=2x上;
(3)fn(x)=aex=0(n≥6)无解,∴k≤5;
①k=5,f4(x)=f5(x)=0,∴
,
∴x0=1,a=-
.
a=-
时,f6(x)<0,f5(x)=2+aex=2-2ex-1单调递减,且f5(1)=0,
∴f4(x)在(-∞,1)上增,在(1,+∞)上减,
∵f4(1)=0,
∴f4(x)≤0恒成立,
∴f3(x)=单调递减,而f3(x)=x2-2ex-1,f3(-1)>0,f3(0)<0,
∴∃t∈(-1,0),f3(t)=0在(-∞,t)上f3(t)<0,
∴f2(t)=0在(-∞,t)上增,(t,+∞)上减,
∵f3(t)<0,
∴f1(t)在R上单调递减,
∴k=5,a=-
满足题意;
②k=4时,f4(x)=0,则x=0或2,
x=0时,f4(0)=a=0(舍去);
x=2时,f4(2)=0,∴a=-
,∴f6(x)<0
∴f5(x)=2-4ex-2单调递减,且f5(x)=0时,x=2-ln2,
∴f4(x)在(-∞,2-ln2)上增,(2-ln2,+∞)上减,
∵f4(2)=0,
∴∃m<2-ln2,使得在(-∞,m)上,f4(x)<0,在(m,2)上,f4(x)>0,在(2,+∞)上,f4(x)<0,
∴f3(x)在(-∞,m)上减,在(m,2)上增,在(2,+∞)上减,
∴k≠4,
综上,k=5,a=-
.
1 |
12 |
∴f2(x)=
1 |
3 |
f6(x)=aex,f7(x)=aex,
∴使满足对任意实数x,都有fn(x)=fn-1(x)的最小整数n的值为7;
(2)gn(x)=f4(x)+f5(x)+…+fn(x)=(2x+2)+(n-3)aex,
∴gn′(x)=2+(n-3)aex,
∵y=gn(x)都存在极值点x=tn,
∴gn′(tn)=0,
∴gn(tn)=2tn,
∴点An(tn,gn(tn))在y=2x上;
(3)fn(x)=aex=0(n≥6)无解,∴k≤5;
①k=5,f4(x)=f5(x)=0,∴
|
∴x0=1,a=-
2 |
e |
a=-
2 |
e |
∴f4(x)在(-∞,1)上增,在(1,+∞)上减,
∵f4(1)=0,
∴f4(x)≤0恒成立,
∴f3(x)=单调递减,而f3(x)=x2-2ex-1,f3(-1)>0,f3(0)<0,
∴∃t∈(-1,0),f3(t)=0在(-∞,t)上f3(t)<0,
∴f2(t)=0在(-∞,t)上增,(t,+∞)上减,
∵f3(t)<0,
∴f1(t)在R上单调递减,
∴k=5,a=-
2 |
e |
②k=4时,f4(x)=0,则x=0或2,
x=0时,f4(0)=a=0(舍去);
x=2时,f4(2)=0,∴a=-
4 |
e2 |
∴f5(x)=2-4ex-2单调递减,且f5(x)=0时,x=2-ln2,
∴f4(x)在(-∞,2-ln2)上增,(2-ln2,+∞)上减,
∵f4(2)=0,
∴∃m<2-ln2,使得在(-∞,m)上,f4(x)<0,在(m,2)上,f4(x)>0,在(2,+∞)上,f4(x)<0,
∴f3(x)在(-∞,m)上减,在(m,2)上增,在(2,+∞)上减,
∴k≠4,
综上,k=5,a=-
2 |
e |
看了 设函数f1(x)=112x4...的网友还看了以下:
设f(x)=2^x/(2^x+根号2),求f(1/n)+f(2/n)+f(3/n)+.+f(n/n 2020-05-16 …
求表示方法设m、n均为自然数,m可表示为一些不超过n的自然数之和,f(m,n)为这种表示方式的数目 2020-05-17 …
设f(x)可导,且f(0)=0,F(x)=∫﹙0→x﹚{[t^(n-1)]f(x^n-t^n)}d 2020-06-12 …
已知f(x)在x=a可导,且f(x)>0,n为自然数,求lim[f(a+1/n)/f(a)]^n( 2020-06-12 …
对自然数n规定一种“f”运算:当n是奇数时,f(n)=3n+1;当n是偶数时,f(n)的值为n连续 2020-07-22 …
数列一题设函数f(n)=n(n为自然数,奇数)=n/2(n为自然数,偶数)设数列an=f(1)+f 2020-07-30 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
“设f(n)=1+1/2+1/3+1/4+……+1/n,是否存在关于自然数n的函数g(n)使f(1 2020-08-01 …
设函数f(n)=k(n∈N*),k是自然对数底e的小数点后第n位数字,其中e=2.71828182 2020-08-02 …
选出下面各项中字音有误的一项:A补裰duō渎职dú连篇累牍dú穷兵黩武dúB赎罪shú头发fà发达f 2020-11-07 …