早教吧作业答案频道 -->数学-->
设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)
题目详情
设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.
求证:PA=PF.(初二)

求证:PA=PF.(初二)

▼优质解答
答案和解析
证明方法一:作FG⊥CD,FE⊥BE,可以得出GFEC为正方形.
令AB=Y,BP=X,CE=Z,可得PC=Y-X.
tan∠BAP=tan∠EPF=
=
,可得YZ=XY-X2+XZ,
即Z(Y-X)=X(Y-X),即得X=Z,得出△ABP≌△PEF,
∴PA=PF.
方法二:在AB上截取AG=PC,连接PG
∵ABCD是正方形
∴AB=BC,∠B=∠DCB=∠APF=90°
∵AG=CP
∴BG=BP,
∴∠BGP=∠BPG=45°
∴∠AGP=180°-∠BGP=135°
∵CF平分∠DCE
∴∠FCE=45°
∴∠PCF=180°-∠FCE=135°
∴∠AGP=∠PCF
∵∠BAP+∠APB=90°
∠FPC+∠APB=90°
∴∠BAP=∠FPC,
在△AGP和△PCF中
,
∴△AGP≌△PCF(ASA)
∴PA=PF.

令AB=Y,BP=X,CE=Z,可得PC=Y-X.
tan∠BAP=tan∠EPF=
X |
Y |
Z |
Y−X+Z |
即Z(Y-X)=X(Y-X),即得X=Z,得出△ABP≌△PEF,
∴PA=PF.
方法二:在AB上截取AG=PC,连接PG
∵ABCD是正方形
∴AB=BC,∠B=∠DCB=∠APF=90°

∵AG=CP
∴BG=BP,
∴∠BGP=∠BPG=45°
∴∠AGP=180°-∠BGP=135°
∵CF平分∠DCE
∴∠FCE=45°
∴∠PCF=180°-∠FCE=135°
∴∠AGP=∠PCF
∵∠BAP+∠APB=90°
∠FPC+∠APB=90°
∴∠BAP=∠FPC,
在△AGP和△PCF中
|
∴△AGP≌△PCF(ASA)
∴PA=PF.
看了 设P是正方形ABCD一边BC...的网友还看了以下:
设f(x)在[a,b]上连续,在(a,b)内可导,且当x∈(a,b)时,f(x)≠0.若f(a)= 2020-05-14 …
高数题目设f(x)在[a,b]上可导,又f'(x)+[f(x)]^2-∫(a到x)f(t)dt=0 2020-06-12 …
已知f(x)在区间(﹣∞,+∞)上是减函数,a,b∈R,且a+b≤0,则下列正确的是?A.f(a) 2020-07-14 …
若函数f(x)是定义在R上的奇函数,且对任意正数a、b都有满足f(a+b)=f(a)*f(b),试 2020-07-15 …
已知函数fx是r上的增函数,对于实数ab若a+b>0,则()a.f(a)+f(b)>f(-a)+f 2020-07-27 …
设映射f:X→Y,A包含于X,B包含于X.证明:f(A∩B)包含于f(A)∩f(B).我的证明是这样 2020-11-01 …
设函数f(x)在[a,b]上连续,在(a,b)上可导且f'(x)≠0那么下列一定成立的是()A.f( 2020-11-03 …
儿子的两道习题及解答理解不了,不知道什么涵义,求详解1.若对于一切实数a,b均有f(ab)=f(a) 2020-11-21 …
已知f(x)在R上是增函已知f(x)在R上是增函数,a,b∈R,且a+b≤0,则有[]A、f(a)+ 2020-12-08 …
1)设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明:在(a,b)内存在一点ξ,使f'( 2020-12-28 …