早教吧作业答案频道 -->物理-->
如图所示,在倾角为θ=37°斜面上,有一质量为m、长为L=11m的木板B,木板B的上表面上部分L1=3m光滑,下部分粗糙,在木板B的上端有一质量也为m的小滑块A,A与B板下部分间的摩擦因数μ1=0.15,
题目详情
如图所示,在倾角为θ=37°斜面上,有一质量为m、长为L=11m的木板B,木板B的上表面上部分L1=3m光滑,下部分粗糙,在木板B的上端有一质量也为m的小滑块A,A与B板下部分间的摩擦因数μ1=0.15,木板B与斜面间的动摩擦因数μ2=0.4,开始时A和B均处于静止状态,现由静止释放A,此时刻为计时起点,A开始向下运动,斜面足够长,最大静摩擦力等于滑动摩擦力,sin37°=0.6,cos37°=0.8,重力加速度g取10m/s2,求:

(1)刚开始运动时,A和B加速度的大小;
(2)A在B上运动的总时间.

(1)刚开始运动时,A和B加速度的大小;
(2)A在B上运动的总时间.
▼优质解答
答案和解析
(1)开始时,设滑块的加速度为aA,根据牛顿第二定律可得:
mgsin37°=maA,
代入数据解得 aA=6m/s2;
对于木板B,由于mgsin37°<μ(m+m)gcos37°,故A在木板B上滑动时,B静止不动,加速度 aB=0.
(2)滑块在L1部分运动的过程,对A,由运动学公式得
L1=
aA
解得 t1=1s
当滑块A滑到B板下部分后,对滑块,由牛顿第二定律可得:
mgsin37°-μ1mgcos37°=maA′
代入数据解得:aA′=4.8m/s2;
滑块A运动的位移 xA=vt2+
aA′
其中 v=aAt1
对木板B,由牛顿第二定律得
mgsin37°+μ1mgcos37°-μ2•2mgcos37°=maB′
代入数据解得:aB′=0.8m/s2;
木板B的位移为:xB=
aB′
当A刚要离开B时有 xA-xB=L-L1
总时间 t=t1+t2.
联立解得 t=2s
答:
(1)刚开始运动时,A和B加速度的大小分别为6m/s2和0;
(2)A在B上运动的总时间是2s.
mgsin37°=maA,
代入数据解得 aA=6m/s2;
对于木板B,由于mgsin37°<μ(m+m)gcos37°,故A在木板B上滑动时,B静止不动,加速度 aB=0.
(2)滑块在L1部分运动的过程,对A,由运动学公式得
L1=
1 |
2 |
t | 2 1 |
解得 t1=1s
当滑块A滑到B板下部分后,对滑块,由牛顿第二定律可得:
mgsin37°-μ1mgcos37°=maA′
代入数据解得:aA′=4.8m/s2;
滑块A运动的位移 xA=vt2+
1 |
2 |
t | 2 2 |
其中 v=aAt1
对木板B,由牛顿第二定律得
mgsin37°+μ1mgcos37°-μ2•2mgcos37°=maB′
代入数据解得:aB′=0.8m/s2;
木板B的位移为:xB=
1 |
2 |
t | 2 2 |
当A刚要离开B时有 xA-xB=L-L1
总时间 t=t1+t2.
联立解得 t=2s
答:
(1)刚开始运动时,A和B加速度的大小分别为6m/s2和0;
(2)A在B上运动的总时间是2s.
看了 如图所示,在倾角为θ=37°...的网友还看了以下:
质量为M的木箱置于水平地面上质量为M的木箱置于水平地面上,在其内部顶壁固定一轻质弹簧,弹簧下端与质 2020-05-17 …
万有引力的一个问题?万有引力中,半径为R的球壳质量为m,一质量为M的小球(可看做质点).若小球在球 2020-06-07 …
一直立的圆柱罐,质量为M,高为H,密度均匀。初始时充满质量也为M的汽水。在水罐的底部和顶部钻小孔使 2020-07-04 …
如图所示,在倾角为θ=37°斜面上,有一质量为m、长为L=11m的木板B,木板B的上表面上部分L1 2020-07-21 …
如图为物质W(不含结晶水)的溶解度曲线.M、N两点分别表示含物质W的两种溶液,下列说法正确的是() 2020-07-26 …
质量为M的小车置于水平面上.小车的上表面由14圆弧和平面组成,车的右端固定有一不计质量的弹簧,圆弧 2020-07-31 …
有一质量为M,半径为R的密度均匀球体,在距离球心O为2R的地方有一质量为m的质点,现从M中挖去一半 2020-07-31 …
如图所示,离质量为M、半径为R、密度均匀的球体表面R远处有一质量为m的质点,此时M对m的万有引力为 2020-07-31 …
如图所示,总质量为M带有底座的足够宽框架直立在光滑水平面上,质量为m的小球通过细线悬挂于框架顶部O 2020-08-02 …
如图所示,质量为M的小车B静止在光滑水平面上,车的左端固定着一根弹簧,小车上O点以左部分光滑,O点以 2020-11-25 …