如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDBB.∠BEDC.∠AFBD.2∠ABF
如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于( )


A.∠EDB B.∠BED C.![]()
∠AFB D.2∠ABF
C【考点】全等三角形的判定与性质.
【分析】根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.
【解答】在△ABC和△DEB中,

,
∴△ABC≌△DEB (SSS),
∴∠ACB=∠DBE.
∵∠AFB是△BFC的外角,
∴∠ACB+∠DBE=∠AFB,
∠ACB=![]()
∠AFB,
故选:C.
【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.
设表达式E=a*(b-c)/(d+e)+f*(g+h),则E的逆波兰表达式为(40),E的波兰表达式 2020-05-26 …
当a、b满足什么条件时,下列关系成立:(1)|a+b|=|a|+|b|;(2)|a+b|=||a| 2020-06-12 …
设A,B为同阶方阵,且通过初等变换可以化成相同的标准形,则:A.A和B的秩相等.B.A与B合同设A 2020-06-30 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
设函数f(x)在闭区间[a,b]上连续,在(a,b)内可导,且f^'(x)≠0.试证存在ξ,η∈( 2020-07-21 …
若函数f(x)在R上可导,且f(x)>f'(x),当a>b时,下列不等式成立的是A.e^af(若函 2020-07-29 …
设函数f(x)在[a,b]上三阶可导,证明:存在一点e∈(a,b),使得f(b)=f(a)+1/2 2020-08-02 …
A:Hello,Ben.B:Hello,David.(1)A:It’sabasketball(篮球) 2020-10-30 …
已知:n=1a^2-b^2=(a-b)(a+b);a^3-b^3=(a-b)(a^2+ab+b^2) 2020-12-23 …
设A.B.C.D为n阶方阵,E为n阶单位阵,则下列命题正确的是?(A)若A^2=0,则A=0(B)A 2021-01-12 …