早教吧作业答案频道 -->数学-->
如图,O的半径为1,A,P,B,C是O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于
题目详情
如图, O的半径为1,A,P,B,C是 O上的四个点,∠APC=∠CPB=60°.
(1)判断△ABC的形状:___;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)当点P位于
的什么位置时,四边形APBC的面积最大?求出最大面积.

(1)判断△ABC的形状:___;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)当点P位于
![]() |
AB |

▼优质解答
答案和解析
证明:(1)△ABC是等边三角形.
证明如下:在 O中
∵∠BAC与∠CPB是
所对的圆周角,∠ABC与∠APC是
所对的圆周角,
∴∠BAC=∠CPB,∠ABC=∠APC,
又∵∠APC=∠CPB=60°,
∴∠ABC=∠BAC=60°,
∴△ABC为等边三角形;
(2)在PC上截取PD=AP,如图1,
又∵∠APC=60°,
∴△APD是等边三角形,
∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.
又∵∠APB=∠APC+∠BPC=120°,
∴∠ADC=∠APB,
在△APB和△ADC中,
,
∴△APB≌△ADC(AAS),
∴BP=CD,
又∵PD=AP,
∴CP=BP+AP;
(3)当点P为
的中点时,四边形APBC的面积最大.
理由如下,如图2,过点P作PE⊥AB,垂足为E.
过点C作CF⊥AB,垂足为F.
∵S△APB=
AB•PE,S△ABC=
AB•CF,
∴S四边形APBC=
AB•(PE+CF),
当点P为
的中点时,PE+CF=PC,PC为 O的直径,
∴此时四边形APBC的面积最大.
又∵ O的半径为1,
∴其内接正三角形的边长AB=
,
∴S四边形APBC=
×2×
=
.
证明如下:在 O中
∵∠BAC与∠CPB是
![]() |
BC |
![]() |
AC |
∴∠BAC=∠CPB,∠ABC=∠APC,
又∵∠APC=∠CPB=60°,
∴∠ABC=∠BAC=60°,
∴△ABC为等边三角形;
(2)在PC上截取PD=AP,如图1,

又∵∠APC=60°,
∴△APD是等边三角形,
∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.
又∵∠APB=∠APC+∠BPC=120°,
∴∠ADC=∠APB,
在△APB和△ADC中,
|
∴△APB≌△ADC(AAS),
∴BP=CD,
又∵PD=AP,
∴CP=BP+AP;
(3)当点P为
![]() |
AB |

理由如下,如图2,过点P作PE⊥AB,垂足为E.
过点C作CF⊥AB,垂足为F.
∵S△APB=
1 |
2 |
1 |
2 |
∴S四边形APBC=
1 |
2 |
当点P为
![]() |
AB |
∴此时四边形APBC的面积最大.
又∵ O的半径为1,
∴其内接正三角形的边长AB=
3 |
∴S四边形APBC=
1 |
2 |
3 |
3 |
看了 如图,O的半径为1,A,P,...的网友还看了以下:
设事件A,B独立,A,C互不相容,P(A)=0.4,P(B)=0.3,P(C)=0.2,P(B|C 2020-04-05 …
A、B、C、D、E分别代表五种短周期元素,且原子序数依次增大.已知B的最外电子层是ns2npn+1 2020-04-08 …
某商品供给量Q对价格P的函数关系为Q=Q(P)=a+b*c的p次方(c≠1)已知当P=2时,Q=3 2020-06-07 …
设A、B、C为3个事件,P(AB)>0,且P(C|AB)=1,则有()A.P(C)≤P(A)+P( 2020-06-12 …
条件概率问题,已知P(A),P(B|A),P(C|A),能否求得P(C|A,B)?写错了,是已知P 2020-06-13 …
设有四张卡片分别标以数字1,2,3,4.今任取一张.设事件A为取到4或2,事件B为取到4或3,事件 2020-06-18 …
设A、B、C为事件,P(ABC)>0,如果P(AB|C)=P(A|C)P(B|C),则()A.P( 2020-07-20 …
地面上有不在同一直线上的A,B,C三点,一只青蛙位于地面上异步于A,B,C的P点,第一步青蛙从P点跳 2020-11-24 …
地面上有不在同一条直线上的三点A,B,C,一只青蛙位于地面异于A,B,C的P点,如图,第一步青蛙从P 2020-11-24 …
7,如果事件ABC相互独立,则下列等式中正确的是()A,P(A+B+C)=P(A)+P(B)+P(C 2020-12-01 …