早教吧作业答案频道 -->数学-->
用导数法计算数列的和:求数列{An},前n项和Sn,其中An=nsin(nx)如题.
题目详情
用导数法计算数列的和:求数列{An},前n项和Sn,其中An=nsin (nx)
如题.
如题.
▼优质解答
答案和解析
先求-cos(nx)的和,再等式两边分别求导即可
而对cosx+cos2x+cos3x+……cosnx
乘以2sinx,
积化和差就变成了 sin2x-0+sin3x-sinx+sin4x-sin2x+...+
sinnx-si(n-2)x+sin(n+1)x-sin(n-1)x
=sin(n+1)x+sinnx-sinx
再除以2sinx,即为答案,[sin(n+1)x+sinnx-sinx]/2sinx
然后你就会了吧
而对cosx+cos2x+cos3x+……cosnx
乘以2sinx,
积化和差就变成了 sin2x-0+sin3x-sinx+sin4x-sin2x+...+
sinnx-si(n-2)x+sin(n+1)x-sin(n-1)x
=sin(n+1)x+sinnx-sinx
再除以2sinx,即为答案,[sin(n+1)x+sinnx-sinx]/2sinx
然后你就会了吧
看了 用导数法计算数列的和:求数列...的网友还看了以下:
有一些自然数n,满足:2n - n 是3的倍数,3n - n 是5的倍数,5n - n是2的倍数. 2020-05-16 …
若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数...若自然数 2020-05-16 …
数列{an}的前n项和Sn=-n²;,数列{bn}满足b1=2,bn+1=3bn-t(n-1),已 2020-05-16 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
数列题,快,在线等,谢谢数列{an}的前n项和Sn=-n²,数列{bn}满足b1=2,bn+1=3 2020-07-20 …
若n为合数,n|x^2-1,则gcd(x+1,n)|ngcd(x-1,n)|n且gcd(x+1,n 2020-07-30 …
设f(N)、g(N)是定义在正数集上的正函数.如果存在正的常数C和自然数N0,使得当N≥N0时有f 2020-07-31 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
求:φ(n)=(1/3)n的所有正整数n.补充:φ(n)是欧拉函数:欧拉函数是数论中很重要的一个函数 2020-11-06 …
定义一种对正数n的“F”运算:一、当n为奇数时结果为3n+5;二、当n为偶数时,结果为n/2^k(其 2020-12-05 …