早教吧作业答案频道 -->数学-->
请问老师:x,y是正实数,x+y=1,求x^2/x+2+y^2/y+1的最小请问老师:x,y是正实数,x+y=1,求x^2/x+2+y^2/y+1的最小值.(老师,我用了换元求导,虽然得出答案但很烦,请老师教我用基本不等式做)谢谢
题目详情
请问老师:x,y是正实数,x+y=1,求x^2/x+2 + y^2/y+1 的最小
请问老师:x,y是正实数,x+y=1,求x^2/x+2 + y^2/y+1 的最小值.
(老师,我用了换元求导,虽然得出答案但很烦,请老师教我用基本不等式做)谢谢
请问老师:x,y是正实数,x+y=1,求x^2/x+2 + y^2/y+1 的最小值.
(老师,我用了换元求导,虽然得出答案但很烦,请老师教我用基本不等式做)谢谢
▼优质解答
答案和解析
因为 x+y=1,(x+2)+(y+1)=4
那么x^2/(x+2) + y^2/(y+1)
=[(x+2)-2]^2/(x+2)+[(y+1)-1]^2/(y+1)
=[(x+2)^2-4(x+2)+4]/(x+2)+[(y+1)^2-2(y+1)+1]/(y+1)
=(x+2)-4+4/(x+2)+(y+1)-2+1/(y+1)
=(x+y-3)+4/(x+2)+1/(y+1)
=-2+[(x+2)+(y+1)]/(x+2)+[(x+2)+(y+1)]/[4(y+1)]
=-2+1+1/4+(y+1)/(x+2)+(x+2)/[4(y+1)]
=-3/4+(y+1)/(x+2)+(x+2)/[4(y+1)]
∵(y+1)/(x+2)+(x+2)/[4(y+1)]≥2√(1/4)=1
当且仅当(y+1)/(x+2)=(x+2)/[4(y+1)]
即x+2=2(y+1)
x=2/3,y=1/3时取等号
∴x^2/(x+2) + y^2/(y+1)≥1/4
即最小值为1/4
那么x^2/(x+2) + y^2/(y+1)
=[(x+2)-2]^2/(x+2)+[(y+1)-1]^2/(y+1)
=[(x+2)^2-4(x+2)+4]/(x+2)+[(y+1)^2-2(y+1)+1]/(y+1)
=(x+2)-4+4/(x+2)+(y+1)-2+1/(y+1)
=(x+y-3)+4/(x+2)+1/(y+1)
=-2+[(x+2)+(y+1)]/(x+2)+[(x+2)+(y+1)]/[4(y+1)]
=-2+1+1/4+(y+1)/(x+2)+(x+2)/[4(y+1)]
=-3/4+(y+1)/(x+2)+(x+2)/[4(y+1)]
∵(y+1)/(x+2)+(x+2)/[4(y+1)]≥2√(1/4)=1
当且仅当(y+1)/(x+2)=(x+2)/[4(y+1)]
即x+2=2(y+1)
x=2/3,y=1/3时取等号
∴x^2/(x+2) + y^2/(y+1)≥1/4
即最小值为1/4
看了 请问老师:x,y是正实数,x...的网友还看了以下:
①y=—2x+根号下(1-x)②y=2x+8/xx属于1,4③y=1/(x^2-x+2)④y=x^ 2020-04-27 …
这个符号“^”表方次数,.求下面3题的通解, y(x^2-xy+y^2)+x(x^2+xy+y^2 2020-05-14 …
把下列各式分解因式:(x+y)^2-(x+y)^3要写过程哦1:(x+y)^2-(x+y)^3=2 2020-06-27 …
谁帮我做因式分解1)5m2n-15mn22)-7x3y2-21x2y33)-15xy-5x24)5 2020-07-19 …
若x,y为实数,且y=√(x^2-4)+√(4-x^2)+1/(x+2),求√(x+y)÷√(x- 2020-07-30 …
关于高数导数的问题.老师进.有句话我不懂:y^(n-2)的二阶导数为y^n我记得对一个有平方的导数 2020-08-02 …
用隐函数求导法则对x^y=y^x求导为什么会得出x^2=y^2x^y=y^x用隐函数求导法则yx^( 2020-10-31 …
(x+y)(x^2-xy+y^2)=x^3+y^3(x-y)(x^2+xy+y^2)=x^3-y^3 2020-11-01 …
怎么样很快地判断函数的奇偶性啊?如Y=x^(-2/3)还有Y=x^(-1/2)还有Y=x^(4/5) 2020-11-02 …
(x-y)(x+y)=x^2-y^2(x-y)(x^2+xy+y^2)=x^3-y^3……(x-y) 2020-11-03 …