早教吧作业答案频道 -->数学-->
若d是使a^d≡1(modm)成立的最小正整数,而且存在整数n使a^n≡1(modm),证明d整除n.我是这么想的:用反证法.假设d不能整除n,则有n=dq+r,0≤r<d,于是1≡a^n=a^(dq+r)=a^dq×a^r(modm)但是我到这里
题目详情
若d是使a^d≡1(modm)成立的最小正整数,而且存在整数n使a^n≡1(modm),证明d整除n.
我是这么想的:用反证法.假设d不能整除n,则有n=dq+r,0≤r<d,于是1≡a^n=a^(dq+r)=a^dq×a^r(modm)
但是我到这里就不会证了,我也看不出有何矛盾,我觉得最主要的是如何去用d是使a^d≡1(modm)成立的最小正整数这个条件.
再有解答者请看看我对问题的追问,这是我的主要疑问,只要解释追问中的内容,能让我明白的一定给分。
我是这么想的:用反证法.假设d不能整除n,则有n=dq+r,0≤r<d,于是1≡a^n=a^(dq+r)=a^dq×a^r(modm)
但是我到这里就不会证了,我也看不出有何矛盾,我觉得最主要的是如何去用d是使a^d≡1(modm)成立的最小正整数这个条件.
再有解答者请看看我对问题的追问,这是我的主要疑问,只要解释追问中的内容,能让我明白的一定给分。
▼优质解答
答案和解析
1≡a^n≡a^(dq+r)≡(a^d)^q×a^r≡1^q×a^r≡a^r(modm)
即1≡a^r(modm)
而d是使a^d≡1(modm)成立的最小正整数,且r
即1≡a^r(modm)
而d是使a^d≡1(modm)成立的最小正整数,且r
看了 若d是使a^d≡1(modm...的网友还看了以下:
正n边形面积pnrn证明好奇怪啊Sn增么会=0.5p.n.r.n(p是n边形周长,r是外切圆半径,读 2020-03-31 …
设A是n阶矩阵(n≥2),试证 R(A*)=n若R(A)=n,=1若R(A)=n-1 =0若R(设 2020-04-05 …
R为N*N任意属于N*NR等价于b=d证R是等价关系,求商集N*N/R 2020-06-12 …
原题是这样的.设f(x)定义在R,是R上的连续函数且对任意x,y属于R都满足f((x+y)/2)= 2020-07-10 …
η0是非齐次线性方程组Ax=B的特解ξ1,ξ2...ξn-r是导出组Ax=0的基础解系证η0,ξ1 2020-07-21 …
证明:▽(1/R)=-r/R^3r是静电场位置矢量,R是r的模.证明:▽^2(1/│r-r'│)= 2020-07-29 …
设R是集合A={1,2,3,4,5,6}上的两个关系,R={(1,1),(1,3),(1,6),( 2020-08-02 …
设集合T={1,2,3,4},R={,,,,,,,},验证R是T上的等价关系,并给出其商集不好意思 2020-08-02 …
▽²(1/R)=-4πδ(R)中δ(R)是什么,有什么性质?证明安培环路定理中有(1/4π)∫[j 2020-08-02 …
设A是实对称方阵.证r(A)=r(A^T*A)=r(A*A^T)就是说证明A的秩等于(A的转置乘以A 2020-11-11 …