早教吧作业答案频道 -->数学-->
(2006•连云港)如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双曲线y=的一个交点,过点C作CD⊥y轴,垂足为D,且△BCD的面积为1.(1)求双曲线的解析式;(2)若在y轴上
题目详情
(2006•连云港)如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双曲线y=
的一个交点,过点C作CD⊥y轴,垂足为D,且△BCD的面积为1.
(1)求双曲线的解析式;
(2)若在y轴上有一点E,使得以E、A、B为顶点的三角形与△BCD相似,求点E的坐标.


(1)求双曲线的解析式;
(2)若在y轴上有一点E,使得以E、A、B为顶点的三角形与△BCD相似,求点E的坐标.

▼优质解答
答案和解析
(1)直线y=kx+2与y轴交于B点,则OB=2;由C(1,a)及△BCD的面积为1可得BD=2,所以a=4,即C(1,4),分别代入两个函数关系式中求解析式;
(2)根据△BAE∽△BCD、△BEA∽△BCD两种情形求解.
【解析】
(1)∵CD=1,△BCD的面积为1,
∴BD=2
∵直线y=kx+2与x轴、y轴分别交于点A、B,
∴当x=0时,y=2,
∴点B坐标为(0,2).
∴点D坐标为(O,4),
∴a=4.
∴C(1,4)
∴所求的双曲线解析式为y=
.
(2)因为直线y=kx+2过C点,
所以有4=k+2,k=2,
直线解析式为y=2x+2.
∴点A坐标为(-1,0),B(0,2),
∴AB=
,BC=
,
当△BAE∽△BCD时,此时点E与点O重合,点E坐标为(O,0);
当△BEA∽△BCD时,
,
∴
,
∴BE=
,
∴OE=
,
此时点E坐标为(0,-
).
(2)根据△BAE∽△BCD、△BEA∽△BCD两种情形求解.
【解析】
(1)∵CD=1,△BCD的面积为1,
∴BD=2
∵直线y=kx+2与x轴、y轴分别交于点A、B,
∴当x=0时,y=2,
∴点B坐标为(0,2).
∴点D坐标为(O,4),
∴a=4.
∴C(1,4)
∴所求的双曲线解析式为y=

(2)因为直线y=kx+2过C点,
所以有4=k+2,k=2,

直线解析式为y=2x+2.
∴点A坐标为(-1,0),B(0,2),
∴AB=


当△BAE∽△BCD时,此时点E与点O重合,点E坐标为(O,0);
当△BEA∽△BCD时,

∴

∴BE=

∴OE=

此时点E坐标为(0,-

看了 (2006•连云港)如图,直...的网友还看了以下:
x^2-y^2=a^2右准线交实轴于P,过P直线交双曲线A、B,过右焦点F引直线垂直AB交双曲线于 2020-04-08 …
如图,已知双曲线y1=1/x(x>0),y2=k/x(x>0),点p为双曲线y2=k/x上的一动点 2020-06-15 …
如图,双曲线y1=x分之1(x大于零),y2=x分之4(x大于零)点P为双曲线y2=x分之4上的点 2020-07-14 …
如图,双曲线y=x/k与直线y=mx交于点A、B、C,AC垂直x轴于C,BC交y轴于D,且S... 2020-07-26 …
1双曲线的一个焦点为F过F作垂直于实轴的直线交双曲线于AB两点若以AB为直径的圆恰好过双曲线的一个 2020-07-30 …
高考数学问题:过双曲线一焦点且垂直于双曲线实轴的直线交双曲线于A,B两点1,过双曲线一焦点且垂直于 2020-07-30 …
如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一 2020-08-03 …
如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一 2020-08-03 …
(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2 2020-11-12 …
点P是x轴正半轴上的一个动点,过点P作x轴的垂线PA交双曲线y=1x于点A,连接OA并延长,与双曲线 2020-12-03 …