早教吧作业答案频道 -->数学-->
如何证明1x2+2x3+…+n(n+1)=n(n+1)(n+2)/3顺便再证明一下1x2+2x3+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4
题目详情
如何证明1x2+2x3+…+n(n+1)=n(n+1)(n+2)/3
顺便再证明一下1x2+2x3+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4
顺便再证明一下1x2+2x3+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4
▼优质解答
答案和解析
证明1x2+2x3+…+n(n+1)=n(n+1)(n+2)/3
1x2+2x3+…+n(n+1)=1x(1+1)+2x(2+1)+.+n(n+1)
=(1^2+2^2+.+n^2)+(1+2+.+n)
=n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)(n+2)/3
证明1x2+2x3+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4是错的,我想应该是证明1x2x3+2x3x4+.+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4
若是证明1x2x3+2x3x4+.+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4
因为n(n+1)(n+2)=n^3+3n^2+2n
所以1x2x3+2x3x4+.+n(n+1)(n+2)
=(1^3+2^3+...+n^3) + 3(1^2+2^2+...+n^2) + 2(1+2+...+n)
=n^2(n+1)^2/4 + n(n+1)(2n+1)/2 + n(n+1)
=n(n+1)(n+2)(n+3)/4
1x2+2x3+…+n(n+1)=1x(1+1)+2x(2+1)+.+n(n+1)
=(1^2+2^2+.+n^2)+(1+2+.+n)
=n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)(n+2)/3
证明1x2+2x3+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4是错的,我想应该是证明1x2x3+2x3x4+.+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4
若是证明1x2x3+2x3x4+.+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4
因为n(n+1)(n+2)=n^3+3n^2+2n
所以1x2x3+2x3x4+.+n(n+1)(n+2)
=(1^3+2^3+...+n^3) + 3(1^2+2^2+...+n^2) + 2(1+2+...+n)
=n^2(n+1)^2/4 + n(n+1)(2n+1)/2 + n(n+1)
=n(n+1)(n+2)(n+3)/4
看了 如何证明1x2+2x3+…+...的网友还看了以下:
再一个数学小题征解证明1+n/1!+n^2/2!+.+n^n/n!与(e^n)/2为等价无穷大量. 2020-04-07 …
an={(n+2)/n(n+1)}/2的(n-2)次方,求an的前n项和求2×4×6×…×2n/1 2020-05-17 …
设n为自然数,求证:(2-1/n)×(2-3/n)×(2-5/n)×...×(2-2n-1/n)≥ 2020-05-20 …
用数学归纳法求证2的n次方大于n的2次方.n大于等于5 2020-06-11 …
不等式的证明设m,n为正整数,f(n)=1+1/2+1/3+.+1/n,证明(1)若n>m,则f( 2020-07-16 …
如何证明1x2+2x3+…+n(n+1)=n(n+1)(n+2)/3顺便再证明一下1x2+2x3+ 2020-07-20 …
设n为自然数,求证:(2-1/n)×(2-3/n)×(2-5/n)×...×(2-2n-1/n)≥ 2020-07-25 …
(1/2)已知an=(1+根号下2)的n次方(n属于N*)若an=a+b根号下2(a.b属于Z)求 2020-07-30 …
一道关于数学归纳法证明题的问题求证:当n≥1(n∈N*)时,(1+2+...+n)(1+1/2+. 2020-08-01 …
已知数列An/An-1=n/n-1A1=2,则An的表达式为?解此题时要不要分类,分为n=1与n》2 2020-12-24 …