早教吧作业答案频道 -->数学-->
正方体ABCD-A1B1C1D1中,O是上底面ABCD中心,若棱长为a,则三棱锥O-AB1D1的体积为.
题目详情
111111
▼优质解答
答案和解析
 如图,在正方体ABCD-A11B11C11D11中,
O是上底面ABCD的中心,棱长为a,
∴对角线AC⊥平面BDD11B11,
∴三棱锥O-AB11D11的体积为
V三棱锥O-AB1D1=
•S△OB1D1•AO
=
•
B1D1•OO1•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    V三棱锥O-AB1D1=
•S△OB1D1•AO
=
•
B1D1•OO1•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    三棱锥O-AB1D1=
•S△OB1D1•AO
=
•
B1D1•OO1•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    1D1=
•S△OB1D1•AO
=
•
B1D1•OO1•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    1=
•S△OB1D1•AO
=
•
B1D1•OO1•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    
1 1 13 3 3•S△OB1D1•AO
=
•
B1D1•OO1•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    S△OB1D1•AO
=
•
B1D1•OO1•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    △OB1D1•AO
=
•
B1D1•OO1•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    1D1•AO
=
•
B1D1•OO1•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    1•AO
=
•
B1D1•OO1•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    
1 1 13 3 3•
B1D1•OO1•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    
1 1 12 2 2B11D11•OO11•AO
=
•
•
a•a•
a
=
a3.
故答案为:
a3.                    
1 1 13 3 3•
•
a•a•
a
=
a3.
故答案为:
a3.                    
1 1 12 2 2•
a•a•
a
=
a3.
故答案为:
a3.                    
2 2 2a•a•
a
=
a3.
故答案为:
a3.                    
2 2 22 2 2a
=
a3.
故答案为:
a3.                    
1 1 16 6 6a3.
故答案为:
a3.                    3.
故答案为:
a3.                    
1 1 16 6 6a3.                    3.                    
 如图,在正方体ABCD-A11B11C11D11中,O是上底面ABCD的中心,棱长为a,
∴对角线AC⊥平面BDD11B11,
∴三棱锥O-AB11D11的体积为
V三棱锥O-AB1D1=
| 1 | 
| 3 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 1 | 
| 3 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 1 | 
| 3 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 1 | 
| 3 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 1 | 
| 3 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 1 | 
| 3 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 1 | 
| 3 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 1 | 
| 2 | 
=
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 1 | 
| 3 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 1 | 
| 2 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 2 | 
  | ||
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
  | ||
| 2 | 
| 2 | 
| 2 | 
| 2 | 
=
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
故答案为:
| 1 | 
| 6 | 
| 1 | 
| 6 | 
 看了 正方体ABCD-A1B1C1...的网友还看了以下:
在三棱柱ABO-A`B`O`中,角AOB=90°,侧棱OO`⊥面OAB,OA=OB=OO`=2.若 2020-05-12 …
在三棱锥SABC中,底面是边长为2的正三角形,点S在底面ABC上的射影O恰是AC的中点,侧棱SB和 2020-05-13 …
如图所示,四棱锥S-ABCD的底面是正方形,每条侧棱长都是底面边长的2倍,P为侧棱SD上的点,O是 2020-07-31 …
(16分)如图,w*w^w.k&s#5@u.c~o*m四棱锥S-ABCD的底面是正方形,每条侧棱的 2020-07-31 …
设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积是多少?如图,P为三 2020-07-31 …
直四棱柱ABCD-abcd的高为3,底面是边长为4且角DAB=60度的菱形,AC交BD=O.ac交 2020-07-31 …
直三棱柱ABC-A1B1C1,底面为等腰直角三角形,角BAC为90度,且AA1=A1B1=2,M为 2020-08-02 …
如图,在棱长均相等的正四棱锥P-ABCD最终,O为底面正方形的重心,M,N分别为侧棱PA,PB的中点 2020-12-05 …
正四棱锥S-ABCD内接于球O;过球心O的一个截面如图,棱锥的底面边长为a,则SC与底面ABCD所成 2021-02-05 …
(2014•抚顺一模)已知正四棱锥P-ABCD的底面边长和高都为4,O是底面ABCD的中心,以O为球 2021-02-05 …