早教吧作业答案频道 -->数学-->
已知椭圆的中心在坐标原点O,焦点在x轴上,经过点A(0,2倍根号3),离心率为2分之1,1.求椭圆的方程2.是否存在过点E(0,-4)的直线l交椭圆于点M,N,且满足向量OM乘以向量ON等于7分之16?
题目详情
已知椭圆的中心在坐标原点O,焦点在x轴上,经过点A(0,2倍根号3),离心率为2分之1,1.求椭圆的方程 2.是否存在过点E(0,-4)的直线l交椭圆于点M,N,且满足向量OM乘以向量ON等于7分之16?
▼优质解答
答案和解析
(1)设椭圆P的方程是:x^2/a^2+y^2/b^2=1
代入点A得:b^2=12,c/a=1/2==>c^2/a^2=1/4==>(a^2-b^2)/a^2=1/4==>a^2=16
即:椭圆方程是:x^2/16+y^2/12=1
(2)设:R(x1,y1),T(x2,y2)
向量OR*向量OT=(x1,y1)*(x2,y2)=x1x2+y1y2=16/7
直线L:y=kx-4代入椭圆方程
得:x^2/16+(kx-4)^2/12=1 ==>x^2(3+4k^2)-32kx+16=0
==>x1x2=16/(3+4k^2),
==>x1+x2=32k/(3+4k^2) y1*y2=(kx1-4)(kx2-4)=(k^2(x1x2)-4k(x1+x2)+16
所以:x1x2+y1y2=(1+k^2)x1x2-4k(x1+x2)+16=16/7
==>k^2=1 ==>k=±1
即:存在过点E(0,-4)的直线L:y=±x-4
代入点A得:b^2=12,c/a=1/2==>c^2/a^2=1/4==>(a^2-b^2)/a^2=1/4==>a^2=16
即:椭圆方程是:x^2/16+y^2/12=1
(2)设:R(x1,y1),T(x2,y2)
向量OR*向量OT=(x1,y1)*(x2,y2)=x1x2+y1y2=16/7
直线L:y=kx-4代入椭圆方程
得:x^2/16+(kx-4)^2/12=1 ==>x^2(3+4k^2)-32kx+16=0
==>x1x2=16/(3+4k^2),
==>x1+x2=32k/(3+4k^2) y1*y2=(kx1-4)(kx2-4)=(k^2(x1x2)-4k(x1+x2)+16
所以:x1x2+y1y2=(1+k^2)x1x2-4k(x1+x2)+16=16/7
==>k^2=1 ==>k=±1
即:存在过点E(0,-4)的直线L:y=±x-4
看了 已知椭圆的中心在坐标原点O,...的网友还看了以下:
数列知识解答下面的题已知数列an的首项a1=a(a是常数,a不等于-1),an=2an-1(n-1为 2020-03-30 …
关于数学排列的问题.请问这个公式是怎么来的?A-n-m(下标n,上标m)=n!除以乘以(n-m)! 2020-05-16 …
设a>2,给定数列{xn}(n为下标),其中x1=a(1为下标),x(n+1)=xn^2/2(xn 2020-07-29 …
在数列{an}中,a1=2,an+1(下标)=λan(下标)+λ^(n+1)+(2-λ)2^n(n 2020-07-29 …
等差数列|an|(n是下标),a1(1是下标)=0,a5+a9(5,9是下标)=98,Sn(n是下 2020-07-29 …
设a0为常数,且an=3^(n-1)-2an-1(n-1为下标)(n∈N*)1.证明:对任意n大于 2020-07-29 …
设Sn为数列{an}的前n项和,对任意的n属于N*都有Sn=(m+1)-man(m为常数且m大于0 2020-08-01 …
设Sn为数列{an}的前n项和,对任意的n属于N*都有Sn=(m+1)-man(m为常数且m大于0 2020-08-01 …
1、已知f(n)=f(n-1)+a^n(n属于自然数,且n大于等于2),f(1)=1,则f(n)= 2020-08-02 …
方程x^2+px+q=0的两实根为a,b,且设I1=a+b,I2=a^2+b^2,I3=a^3+b^ 2020-12-27 …