早教吧作业答案频道 -->数学-->
设Sn为数列{an}的前n项和,对任意的n属于N*都有Sn=(m+1)-man(m为常数且m大于01求证数列an是等比数列2设数列an的公比q=f(m),数列bn满足b1=2a1,bn=f(b下标n-1)(n大于等于2,n属于N*)求数列b
题目详情
设Sn为数列{an}的前n项和,对任意的n属于N* 都有Sn=(m+1)-man(m为常数且m大于0
1求证 数列an是等比数列
2设数列an的公比q=f(m),数列bn满足b1=2a1,bn=f(b下标n-1)(n大于等于2,n属于N* ) 求数列bn的通向公式
3在满足2的条件下,求证:数列bn平方的前n项和Tn小于十八分之八十九
主要是第二问和第三问..
1求证 数列an是等比数列
2设数列an的公比q=f(m),数列bn满足b1=2a1,bn=f(b下标n-1)(n大于等于2,n属于N* ) 求数列bn的通向公式
3在满足2的条件下,求证:数列bn平方的前n项和Tn小于十八分之八十九
主要是第二问和第三问..
▼优质解答
答案和解析
1.
证:
Sn=(m+1)-man
Sn-1=(m+1)-ma(n-1)
an=Sn-Sn-1=(m+1)-man-(m+1)+ma(n-1)
(m+1)an=ma(n-1)
an/a(n-1)=m/(m+1)
m为常数,且m>0,分数有意义,an/a(n-1)为常数.
令n=1 a1=S1=(m+1)-ma1
(1+m)a1=m+1 a1=1
数列{an}为等比数列,首项为1,公比为m/(m+1).
2.
q=f(m)=m/(m+1)
b1=2a1=2
bn=b(n-1)/[b(n-1)+1]
b2=b1/(b1+1)=2/3
b3=b2/(b2+1)=(2/3)/(2/3+1)=2/5
假设n=k时,bk=2/(2k-1),则当n=k+1时
b(k+1)=bk/(bk+1)
=[2/(2k-1)]/[2/(2k-1)+1]
=2/[2+(2k-1)]
=2/(2k+1)
=2/[2(k+1)-1],仍然满足同样的表达式
bn=2/(2n-1)
3.
cn=2^(n+1)/[2/(2n-1)]
=2^(n+1)(2n-1)/2
=2^n(2n-1)
c1=2 c2=12
cn-c(n-1)
=(2n-1)*2^n-2^(n-1)(2n-3)
=2^(n-1)[4n-2-2n+3]
=2^(n-1)(2n+1)
=2^(n+1)(2n+1)/4
=c(n+1)/4
c(n+1)=4[cn-c(n-1)]
cn=4[c(n-1)-c(n-2)]
...
c3=4(c2-c1)
连加
c3+c4+...+cn=4[c(n-1)-c1]
c1+c2+...+cn=4c(n-1)+6
Tn=4c(n-1)+6
=4*2^(n-1)(2n-3)+6
=(2n-3)2^(n+1)+6
证:
Sn=(m+1)-man
Sn-1=(m+1)-ma(n-1)
an=Sn-Sn-1=(m+1)-man-(m+1)+ma(n-1)
(m+1)an=ma(n-1)
an/a(n-1)=m/(m+1)
m为常数,且m>0,分数有意义,an/a(n-1)为常数.
令n=1 a1=S1=(m+1)-ma1
(1+m)a1=m+1 a1=1
数列{an}为等比数列,首项为1,公比为m/(m+1).
2.
q=f(m)=m/(m+1)
b1=2a1=2
bn=b(n-1)/[b(n-1)+1]
b2=b1/(b1+1)=2/3
b3=b2/(b2+1)=(2/3)/(2/3+1)=2/5
假设n=k时,bk=2/(2k-1),则当n=k+1时
b(k+1)=bk/(bk+1)
=[2/(2k-1)]/[2/(2k-1)+1]
=2/[2+(2k-1)]
=2/(2k+1)
=2/[2(k+1)-1],仍然满足同样的表达式
bn=2/(2n-1)
3.
cn=2^(n+1)/[2/(2n-1)]
=2^(n+1)(2n-1)/2
=2^n(2n-1)
c1=2 c2=12
cn-c(n-1)
=(2n-1)*2^n-2^(n-1)(2n-3)
=2^(n-1)[4n-2-2n+3]
=2^(n-1)(2n+1)
=2^(n+1)(2n+1)/4
=c(n+1)/4
c(n+1)=4[cn-c(n-1)]
cn=4[c(n-1)-c(n-2)]
...
c3=4(c2-c1)
连加
c3+c4+...+cn=4[c(n-1)-c1]
c1+c2+...+cn=4c(n-1)+6
Tn=4c(n-1)+6
=4*2^(n-1)(2n-3)+6
=(2n-3)2^(n+1)+6
看了 设Sn为数列{an}的前n项...的网友还看了以下:
已知等差数列{An}前n项和Sn.且满足a2=3.S6=36(1)求数列{An}的通项公式(2)数 2020-05-14 …
设{an}是等差数列,{bn}是各项都为正数的等比数列且a1=1,b1=2,a2+b3=10,a3 2020-05-14 …
设数列{an}的前n项和Sn=n²..{bn}是各项均为正数的等比数列且a1=b1 a5×b3=1 2020-05-15 …
已知,{an}为等差数列,且a2=4,a4=8.(1)求{an}的通项公式及前n项和sn.(2)若 2020-05-17 …
设{an}是等比数列,且各项均为正,又a1+a2+aa53+a4+a5=211/27,1/a1+1 2020-06-11 …
1、设{an}是等差数列.{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a 2020-07-09 …
已知△ABC的三个角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,且b=根号3.数列{ 2020-07-30 …
已知数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,{bn}为等差数列且各项均为正数,a 2020-10-31 …
数列{an},{bn}中,{bn}为等比数列,且公比为4,首项为2,bn=2an,求b5,求{an} 2020-10-31 …
设圆cn:(x-an)2+(y-n)2=5n2,且圆Cn与圆Cn+1没切,数列{an}是正项数列且首 2021-01-11 …