早教吧作业答案频道 -->数学-->
设Sn为数列{an}的前n项和,对任意的n属于N*都有Sn=(m+1)-man(m为常数且m大于01求证数列an是等比数列2设数列an的公比q=f(m),数列bn满足b1=2a1,bn=f(b下标n-1)(n大于等于2,n属于N*)求数列b
题目详情
设Sn为数列{an}的前n项和,对任意的n属于N* 都有Sn=(m+1)-man(m为常数且m大于0
1求证 数列an是等比数列
2设数列an的公比q=f(m),数列bn满足b1=2a1,bn=f(b下标n-1)(n大于等于2,n属于N* ) 求数列bn的通向公式
3在满足2的条件下,求证:数列bn平方的前n项和Tn小于十八分之八十九
主要是第二问和第三问..
1求证 数列an是等比数列
2设数列an的公比q=f(m),数列bn满足b1=2a1,bn=f(b下标n-1)(n大于等于2,n属于N* ) 求数列bn的通向公式
3在满足2的条件下,求证:数列bn平方的前n项和Tn小于十八分之八十九
主要是第二问和第三问..
▼优质解答
答案和解析
1.
证:
Sn=(m+1)-man
Sn-1=(m+1)-ma(n-1)
an=Sn-Sn-1=(m+1)-man-(m+1)+ma(n-1)
(m+1)an=ma(n-1)
an/a(n-1)=m/(m+1)
m为常数,且m>0,分数有意义,an/a(n-1)为常数.
令n=1 a1=S1=(m+1)-ma1
(1+m)a1=m+1 a1=1
数列{an}为等比数列,首项为1,公比为m/(m+1).
2.
q=f(m)=m/(m+1)
b1=2a1=2
bn=b(n-1)/[b(n-1)+1]
b2=b1/(b1+1)=2/3
b3=b2/(b2+1)=(2/3)/(2/3+1)=2/5
假设n=k时,bk=2/(2k-1),则当n=k+1时
b(k+1)=bk/(bk+1)
=[2/(2k-1)]/[2/(2k-1)+1]
=2/[2+(2k-1)]
=2/(2k+1)
=2/[2(k+1)-1],仍然满足同样的表达式
bn=2/(2n-1)
3.
cn=2^(n+1)/[2/(2n-1)]
=2^(n+1)(2n-1)/2
=2^n(2n-1)
c1=2 c2=12
cn-c(n-1)
=(2n-1)*2^n-2^(n-1)(2n-3)
=2^(n-1)[4n-2-2n+3]
=2^(n-1)(2n+1)
=2^(n+1)(2n+1)/4
=c(n+1)/4
c(n+1)=4[cn-c(n-1)]
cn=4[c(n-1)-c(n-2)]
...
c3=4(c2-c1)
连加
c3+c4+...+cn=4[c(n-1)-c1]
c1+c2+...+cn=4c(n-1)+6
Tn=4c(n-1)+6
=4*2^(n-1)(2n-3)+6
=(2n-3)2^(n+1)+6
证:
Sn=(m+1)-man
Sn-1=(m+1)-ma(n-1)
an=Sn-Sn-1=(m+1)-man-(m+1)+ma(n-1)
(m+1)an=ma(n-1)
an/a(n-1)=m/(m+1)
m为常数,且m>0,分数有意义,an/a(n-1)为常数.
令n=1 a1=S1=(m+1)-ma1
(1+m)a1=m+1 a1=1
数列{an}为等比数列,首项为1,公比为m/(m+1).
2.
q=f(m)=m/(m+1)
b1=2a1=2
bn=b(n-1)/[b(n-1)+1]
b2=b1/(b1+1)=2/3
b3=b2/(b2+1)=(2/3)/(2/3+1)=2/5
假设n=k时,bk=2/(2k-1),则当n=k+1时
b(k+1)=bk/(bk+1)
=[2/(2k-1)]/[2/(2k-1)+1]
=2/[2+(2k-1)]
=2/(2k+1)
=2/[2(k+1)-1],仍然满足同样的表达式
bn=2/(2n-1)
3.
cn=2^(n+1)/[2/(2n-1)]
=2^(n+1)(2n-1)/2
=2^n(2n-1)
c1=2 c2=12
cn-c(n-1)
=(2n-1)*2^n-2^(n-1)(2n-3)
=2^(n-1)[4n-2-2n+3]
=2^(n-1)(2n+1)
=2^(n+1)(2n+1)/4
=c(n+1)/4
c(n+1)=4[cn-c(n-1)]
cn=4[c(n-1)-c(n-2)]
...
c3=4(c2-c1)
连加
c3+c4+...+cn=4[c(n-1)-c1]
c1+c2+...+cn=4c(n-1)+6
Tn=4c(n-1)+6
=4*2^(n-1)(2n-3)+6
=(2n-3)2^(n+1)+6
看了 设Sn为数列{an}的前n项...的网友还看了以下:
下列关于原始凭证的表述正确的是()a在证明经济业务发生,据以编制记账凭证的作用方面,自制原始凭证与 2020-04-26 …
数列证明题(在线等,完成后在多给分)下面的a(1),a(2),.a(n)都是数组的项.a(n)*2 2020-06-06 …
有限个可列集之并可列证明证明有限个可列集之并是可列的我觉得可以用归纳法证,A1={a1,...,a 2020-06-11 …
保证人须向债权人证明其有清偿能力对吗下列关于保证担保的说法,正确的是()。A.保证人须向债权人证明 2020-06-19 …
两个高数问题中数列极限的问题,要用定义证明,(1)设数列{Xn}有界 ,又lim(n->∞)Yn= 2020-06-27 …
高数极限题1.对于数列Xn,若X2k->a(k>∞),X2k-1->a(k>∞),证明:Xn->a 2020-07-31 …
设A(a1,a2,a3...)为是实矩阵,证明|Det(A)|小于等于a1列各元素平方和的1/2乘 2020-08-03 …
设3阶矩阵A列分块为A=(a1,a2,a3),矩阵B=(2a1+3a2-5a3,a1+a2,a3), 2020-10-31 …
关于A=0的证明设A是n阶实对称矩阵,且A²=0证明A=0.其中一种证明方法是这样的:由A(T)A= 2020-11-03 …
设A=(A1,A2,A3)是3阶方阵A的分块矩阵,若|A|=3,求|2A1+A2,A3,A2| 2020-11-07 …