早教吧作业答案频道 -->其他-->
已知{an}为等比数列,a1=1,a6=243.Sn为等差数列{bn}的前n项和,b1=3,S5=35.(1)求{an}和{Bn}的通项公式;(2)设Tn=a1b1+a2b2+…+anbn,求Tn.
题目详情
已知{an}为等比数列,a1=1,a6=243.Sn为等差数列{bn}的前n项和,b1=3,S5=35.
(1)求{an}和{Bn}的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn,求Tn.
(1)求{an}和{Bn}的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn,求Tn.
▼优质解答
答案和解析
(Ⅰ)∵{an}为等比数列,a1=1,a6=243,
∴1×q5=243,解得q=3,
∴an=3n−1.
∵Sn为等差数列{bn}的前n项和,b1=3,S5=35.
∴5×3+
d=35,解得d=2,
bn=3+(n-1)×2=2n+1.
(Ⅱ)∵Tn=a1b1+a2b2+…+anbn,
∴Tn=3×1+5×3+…+(2n−1)×3n−2+(2n+1)×3n−1①
3Tn=3×3+5×32+…+(2n−1)×3n−1+(2n+1)×3n②
①-②得:−2Tn=3+2×(3+32+…+3n−1)−(2n+1)×3n,
整理得:Tn=n×3n.
∴1×q5=243,解得q=3,
∴an=3n−1.
∵Sn为等差数列{bn}的前n项和,b1=3,S5=35.
∴5×3+
5×4 |
2 |
bn=3+(n-1)×2=2n+1.
(Ⅱ)∵Tn=a1b1+a2b2+…+anbn,
∴Tn=3×1+5×3+…+(2n−1)×3n−2+(2n+1)×3n−1①
3Tn=3×3+5×32+…+(2n−1)×3n−1+(2n+1)×3n②
①-②得:−2Tn=3+2×(3+32+…+3n−1)−(2n+1)×3n,
整理得:Tn=n×3n.
看了 已知{an}为等比数列,a1...的网友还看了以下:
某公司2009年初在A.B.C.D四个项目上各投入199万元营运,至2009年底,A项目获利百分之1 2020-03-31 …
在等差数列an中,其前n项和为Sn且a3=6 s7=56 ⑴求an的通项公式 ⑵今bn=1/a在等 2020-05-16 …
等差数列{an}的前三项分别是a 1,2a,a 3,则该数列的通项公式为等差数列{an}的前三项分 2020-05-17 …
已知a、b、m、n∈N+,{an}是首项为a,公差为b的等差数列;{bn}是首项为b,公比为a的等 2020-06-05 …
已知数列{an}的前n项和为Sn=n^2+n+1(1)求数列{an}的通项公式(2)已知数列{an 2020-07-11 …
(1/2)已知等比数列{an}的前n项和为Sn=a乘2的n次方加b,且a1=3.求a.b的值及数列 2020-07-18 …
等差数列an的首项a1为a,公差d=2,前n项和为Sn(1)若S1,S2,S4成等比数列,求数列a 2020-07-30 …
通项公式好难的!在线等!求下这个通项公式A(N+1)=2A(N)/1+[A(N)]的平方的通项公式, 2020-11-17 …
下列结论不正确的是:A根据通项公式可以求出数列的任何一项B根据递推公式可以求出数列的任何一项C任何数 2020-11-22 …
某公司2009年初在A.B.C.D四个项目上各投入199万元营运,至2009年底,A项目获利百分之1 2020-12-15 …