早教吧作业答案频道 -->其他-->
Sn=213+419+6127+…+(2n+13n)=n(n+1)+1−(13)n2n(n+1)+1−(13)n2.
题目详情
Sn=2
+4
+6
+…+(2n+
)=
1 |
3 |
1 |
9 |
1 |
27 |
1 |
3n |
n(n+1)+
1−(
| ||
2 |
n(n+1)+
.1−(
| ||
2 |
▼优质解答
答案和解析
Sn=2
+4
+6
+…(2n+
)
=(2+4+6+…+2n)+(
+
+…+
)
=
×n+
=n(n+1)+
故答案为:n(n+′1)+
1 |
3 |
1 |
9 |
1 |
27 |
1 |
3n |
=(2+4+6+…+2n)+(
1 |
3 |
1 |
9 |
1 |
3n |
=
2+2n |
2 |
| ||||
1−
|
=n(n+1)+
1−(
| ||
2 |
故答案为:n(n+′1)+
1−(
| ||
2 |
看了 Sn=213+419+612...的网友还看了以下:
求数列0,1,1,2,2,3,3,4,4.的前n项和S当n是奇数时.S=2*{[(n-1)/2]* 2020-04-09 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
求渐化式~急已知:p(n)=1/2p(n-1)+1/2p(n-2)求p(n)用n表示由已知可得:p 2020-07-08 …
已知数列{an}的通项公式为an=2^(n-1)+1则a1Cn^0+a2Cn^1+a3Cn^2+. 2020-07-09 …
数列{n×2^(n-1)}的前n项和为多少?A.-n*2^n-1+2^nBn*2^n+1-2^nC 2020-07-09 …
阅读以下求1+2+3+…+n的值的过程:因为(n+1)2-n2=2n+1n2-(n-1)2=2(n 2020-07-17 …
Sn=213+419+6127+…+(2n+13n)=n(n+1)+1−(13)n2n(n+1)+ 2020-07-19 …
P(n)推导已知p(1)=1;p(n)=(1-1/(n^2))p(n-1)+2/n-1/(n^2) 2020-08-01 …
1+2+3+4+5+.+n=0.5n^2+n1^2+2^2+3^2.+n^2=n(n+1)(2n+ 2020-08-03 …