早教吧作业答案频道 -->数学-->
阅读以下求1+2+3+…+n的值的过程:因为(n+1)2-n2=2n+1n2-(n-1)2=2(n-1)+1…22-12=2×1+1以上各式相加得(n+1)2-1=2×(1+2+3+…+n)+n所以1+2+3+…+n=n2+2n-n2=n(n+1)2.类比上述过程,求12+22+32+…+n2的值.
题目详情
阅读以下求1+2+3+…+n的值的过程:
因为(n+1)2-n2=2n+1
n2-(n-1)2=2(n-1)+1
…
22-12=2×1+1
以上各式相加得(n+1)2-1=2×(1+2+3+…+n)+n
所以1+2+3+…+n=
=
.
类比上述过程,求12+22+32+…+n2的值.
因为(n+1)2-n2=2n+1
n2-(n-1)2=2(n-1)+1
…
22-12=2×1+1
以上各式相加得(n+1)2-1=2×(1+2+3+…+n)+n
所以1+2+3+…+n=
| n2+2n-n |
| 2 |
| n(n+1) |
| 2 |
类比上述过程,求12+22+32+…+n2的值.
▼优质解答
答案和解析
∵23-13=3•22-3•2+1,
33-23=3•32-3•3+1,…,
n3-(n-1)3=3n2-3n+1,
把这n-1个等式相加得n3-1=3•(22+32+…+n2)-3•(2+3+…+n)+(n-1),
由此得n3-1=3•(12+22+32+…+n2)-3•(1+2+3+…+n)+(n-1),
即12+22+…+n2=
[n3-1+
n(n+1)-(n-1)].
33-23=3•32-3•3+1,…,
n3-(n-1)3=3n2-3n+1,
把这n-1个等式相加得n3-1=3•(22+32+…+n2)-3•(2+3+…+n)+(n-1),
由此得n3-1=3•(12+22+32+…+n2)-3•(1+2+3+…+n)+(n-1),
即12+22+…+n2=
| 1 |
| 3 |
| 3 |
| 2 |
看了 阅读以下求1+2+3+…+n...的网友还看了以下:
把你那题改下:a(n+2)=a(n+1)-2a(n),a1=1,a2=1.你在做一下.(我想这个没 2020-04-27 …
一道关于函数奇偶性问题F(X)=X+1的绝对值+X-1的绝对值=X-1绝对值+X+1绝对值=F(X 2020-06-06 …
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
={x||2x-1|>1},集合B={y|y=|logax|,x∈[m,n],a>1},若B=CR 2020-07-30 …
“设f(n)=1+1/2+1/3+1/4+……+1/n,是否存在关于自然数n的函数g(n)使f(1 2020-08-01 …
有关复数的题目一.求适合下列方程的x与y(x,y全属于R)的值:1)(1+2i)x+(3-10i) 2020-08-02 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …
极限:n*ln(1+1/n)=1(n趋近于无穷),请问这是为什么?按我的理解,当n趋于无穷,1+1/ 2020-11-11 …
数学关于分式的一些题目先化简,再求值:(1)(1+3/a-2)/a+1/a^2-4,其中a=2+根号 2020-12-31 …