早教吧作业答案频道 -->数学-->
直线根号3ax+by=1与圆x2+y2=2交于A,B两点rt△AOB(O是原点)点p(a,b)与点(0,1)之间的距离最大值为圆x²+y²=2,圆心为原点,半径r=√2∵△AOB是直角三角形∴O到AB的距离等于√2/2r=1直线√3ax+by=1
题目详情
直线根号3ax+by=1与圆x2+y2=2交于A,B两点 rt△AOB(O是原点) 点p(a,b)与点(0,1)之间的距离最大值为
圆x²+y²=2,圆心为原点,半径r=√2∵△AOB是直角三角形∴O到AB的距离等于√2/2r=1直线√3ax+by=1即√3ax+by-1=0根据点到直线距离公式,得O到直线距离 |-1|/√(3a²+b²)=1∴3a²+b²=1,a²=(1-b²)/3 ,(-1≤b≤1)点P(a,b)与点A(0,1)之间的距离PA|=√[a²+(b-1)²]=√[a²+b²-2b+1] =√[(1-b²)/3+b²-2b+1] =√[2/3b²-2b+4/3] =√[2/3(b²-3b+9/4)-1/6] =√[2/3(b-3/2)²-1/6] ∵-1≤b≤1 ∴b=-1时,|PA|取得最大值2 (-1≤b≤1)这个怎么求出来的
圆x²+y²=2,圆心为原点,半径r=√2∵△AOB是直角三角形∴O到AB的距离等于√2/2r=1直线√3ax+by=1即√3ax+by-1=0根据点到直线距离公式,得O到直线距离 |-1|/√(3a²+b²)=1∴3a²+b²=1,a²=(1-b²)/3 ,(-1≤b≤1)点P(a,b)与点A(0,1)之间的距离PA|=√[a²+(b-1)²]=√[a²+b²-2b+1] =√[(1-b²)/3+b²-2b+1] =√[2/3b²-2b+4/3] =√[2/3(b²-3b+9/4)-1/6] =√[2/3(b-3/2)²-1/6] ∵-1≤b≤1 ∴b=-1时,|PA|取得最大值2 (-1≤b≤1)这个怎么求出来的
▼优质解答
答案和解析
∵3a²+b²=1
∴3a²=1-b²≥0
∴b²≤1
-1≤b≤1
∴3a²=1-b²≥0
∴b²≤1
-1≤b≤1
看了 直线根号3ax+by=1与圆...的网友还看了以下:
求y=sinx+2/sinx,x∈(0,π)的最值解:令t=sinx,x∈(0,π),则t∈(0, 2020-05-13 …
解cosA-1/(2COSA),cosA属于[1/2,1]的取值范围令t=cosA,则f(t)=t 2020-05-17 …
在平面上有A,B,P,Q四个点,A,B为两定点,且AB=根号3,P,Q为两个动点,且AP=PQ=Q 2020-05-23 …
已知关于x的一元二次方程x^2-(t-2)x+t^2+3t+5=0已知关于x的方程x^2-(t-2 2020-06-02 …
定积分Asin^2(t/T)dt是多少原题是从0-T,定积分Asin^2(t/T)dt=1求A的值 2020-06-10 …
均值不等式求最值!求t/t^2+t-1(t>0)的最值求t/t^2+t-1(t>0)的最值, 2020-06-30 …
均值不等式求最值!求t/t^2+t-1(t>0)的最值求t/t^2+t-1(t>0)的最值, 2020-07-15 …
设直线x=2+t,y=4-t(t为参数)与抛物线y2=4x交于两个不同的点P,Q,已知点A(2,4 2020-07-31 …
对数函数问题(已解出一大半了)设x∈[2,8]函数f(x)=1/2loga(ax)·loga(a^ 2020-08-02 …
若函数f(2x+1)=x^2-2x,则f(3)等于多少?两种算法:1.常规算法设2x+1=t,则x= 2020-10-31 …