早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,△ABC中,AB=AC,∠BAC=90°,直线l经过点A,过B、C两点分别作直线l的垂线段,垂足分别为D、E.(1)求证:AE=BD;(2)点O为BC的中点,连接DO、EO,如图2,试判断△ODE的形状?并说明理

题目详情
如图1,△ABC中,AB=AC,∠BAC=90°,直线l经过点A,过B、C两点分别作直线l的垂线段,垂足分别为D、E.
作业帮
(1)求证:AE=BD;
(2)点O为BC的中点,连接DO、EO,如图2,试判断△ODE的形状?并说明理由.
▼优质解答
答案和解析
(1)证明:∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵CE⊥直线l,
∴∠ACE+∠CAE=90°,
∴∠BAD=∠ACE,
∵BD⊥直线l,CE⊥直线l,
∴∠ADB=∠CEA=90°,
在△ABD和△CAE中,
∠BAD=∠ACE
∠ADB=∠CEA=90°
AB=AC

∴△ABD≌△CAE(AAS),
∴AE=BD;

(2)△ODE是等腰直角三角形.
理由如下:如图,连接AO,
∵AB=AC,∠BAC=90°,点O为BC的中点,
∴AO=BO,∠CAO=45°,∠AOB=90°,
∵△ABD≌△CAE,作业帮
∴∠ABD=∠CAE,
∴∠ABD-∠ABO=∠CAE-∠CAO,
∵∠ABO=∠CAO=45°,
∴∠OAE=∠OBD,
在△AOE和△BOD中,
AE=BD
∠OAE=∠OBD
AO=BO

∴△AOE≌△BOD(SAS),
∴OE=OD,∠AOE=∠BOD,
∴∠DOE=∠BOE+∠BOD=∠BOE+∠AOE=∠AOB=90°,
∴△ODE是等腰直角三角形.