早教吧作业答案频道 -->政治-->
已知点A(1,1)是椭圆(a>b>0)上一点,,是椭圆的两焦点,且满足.(1)求椭圆的两焦点坐标;(2)设点B是椭圆上任意一点,如果|AB|最大时,求证A、B两点关于原点O不对称;(3)设点C、D是椭圆上
题目详情
已知点A(1,1)是椭圆
(a>b>0)上一点,
,
是椭圆的两焦点,且满足
.
(1)求椭圆的两焦点坐标;
(2)设点B是椭圆上任意一点,如果|AB|最大时,求证A、B两点关于原点O不对称;
(3)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,试判断直线CD的斜率是否为定值?若是定值,求出定值;若不是定值,说明理由.____




(1)求椭圆的两焦点坐标;
(2)设点B是椭圆上任意一点,如果|AB|最大时,求证A、B两点关于原点O不对称;
(3)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,试判断直线CD的斜率是否为定值?若是定值,求出定值;若不是定值,说明理由.____
▼优质解答
答案和解析
【分析】(I)先由椭圆定义知:2a=4,再把(1,1)代入得即可求得椭圆方程,从而求得两焦点坐标;
(II)用反证法:假设A、B两点关于原点O对称,则B点坐标为(-1,-1),再取椭圆上一点M(-2,0),从而此时|AB|不是最大,这与|AB|最大矛盾,所以命题成立.
(III)设AC方程为:y=k(x-1)+1,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合点A(1,1)在椭圆上C,D两点的坐标,从而求得直线CD的斜率为定值.
(II)用反证法:假设A、B两点关于原点O对称,则B点坐标为(-1,-1),再取椭圆上一点M(-2,0),从而此时|AB|不是最大,这与|AB|最大矛盾,所以命题成立.
(III)设AC方程为:y=k(x-1)+1,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合点A(1,1)在椭圆上C,D两点的坐标,从而求得直线CD的斜率为定值.
(I)由椭圆定义知:2a=4,
∴a=2,
∴
把(1,1)代入得
∴
,则椭圆方程为
,
∴
,
∴
故两焦点坐标为
(4分)
(II)用反证法:假设A、B两点关于原点O对称,则B点坐标为(-1,-1),
此时
取椭圆上一点M(-2,0),则
∴|AM|>|AB|.
从而此时|AB|不是最大,这与|AB|最大矛盾,所以命题成立.(8分)
(III)设AC方程为:y=k(x-1)+1
联立
消去y得(1+3k2)x2-6k(k-1)x+3k2-6k-1=0
∵点A(1,1)在椭圆上,
∴
(10分)
∵直线AC、AD倾斜角互补
∴AD的方程为y=-k(x-1)+1
同理
(11分)
又yc=k(xC-1)+1,yD=-k(xD-1)+1,yC-yD=k(xC+xD)-2k
所以
即直线CD的斜率为定值
(13分)
∴a=2,
∴

把(1,1)代入得

∴


∴

∴

故两焦点坐标为

(II)用反证法:假设A、B两点关于原点O对称,则B点坐标为(-1,-1),
此时


∴|AM|>|AB|.
从而此时|AB|不是最大,这与|AB|最大矛盾,所以命题成立.(8分)
(III)设AC方程为:y=k(x-1)+1
联立

消去y得(1+3k2)x2-6k(k-1)x+3k2-6k-1=0
∵点A(1,1)在椭圆上,
∴

∵直线AC、AD倾斜角互补
∴AD的方程为y=-k(x-1)+1
同理

又yc=k(xC-1)+1,yD=-k(xD-1)+1,yC-yD=k(xC+xD)-2k
所以

即直线CD的斜率为定值

【点评】本小题主要考查直线与圆锥曲线的综合问题、椭圆的简单性质、椭圆方程等基础知识,考查运算求解能力、转化思想.属于中档题.
看了 已知点A(1,1)是椭圆(a...的网友还看了以下:
椭圆基础问题过椭圆X^2/a^2+y^2/b^2=1一个焦点F作两条相互垂直的直线L1,L2,L1 2020-05-12 …
已知椭圆M:x^2/a^2y^2/b^2=1(a>b>0)的短半轴长b=1,且椭圆上一点与椭圆的两 2020-05-14 …
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1,求椭圆C 2020-05-16 …
(1/2)椭圆ax^2+bx^2=1与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB 2020-05-16 …
已知椭圆C:=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2= 2020-06-21 …
如图,在平面直角坐标系xoy中,椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/ 2020-06-30 …
高手看下这个求椭圆切点弦的过程,我不大懂~过椭圆X2/4+y2/2=1外一点P(4,1)向椭圆作切 2020-07-31 …
已知椭圆C:y2/a2+x2/b2=1(a>b>0)的离心率为2分之根号3,椭圆C的短轴的一个端点 2020-07-31 …
如图,在平面直角坐标系xoy中,椭圆x2a2+y2b2=1(a>b>0)的离心率为12,过椭圆由焦 2020-07-31 …
已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦 2020-08-02 …