早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.

题目详情
已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.
(1)如图①,求∠T和∠CDB的大小;
(2)如图②,当BE=BC时,求∠CDO的大小.
作业帮
▼优质解答
答案和解析
作业帮 (1)如图①,∵连接AC,
∵AT是⊙O切线,AB是⊙O的直径,
∴AT⊥AB,即∠TAB=90°,
∵∠ABT=50°,
∴∠T=90°-∠ABT=40°,
由AB是⊙O的直径,得∠ACB=90°,
∴∠CAB=90°-∠ABC=40°,
∴∠CDB=∠CAB=40°;

(2)如图②,连接AD,
在△BCE中,BE=BC,∠EBC=50°,作业帮
∴∠BCE=∠BEC=65°,
∴∠BAD=∠BCD=65°,
∵OA=OD,
∴∠ODA=∠OAD=65°,
∵∠ADC=∠ABC=50°,
∴∠CDO=∠ODA-∠ADC=65°-50°=15°.