早教吧作业答案频道 -->其他-->
(2012•江苏二模)如图,在四边形ABCD中,已知AB=13,AC=10,AD=5,CD=65,AB•AC=50(1)求cos∠BAC的值;(2)求sin∠CAD的值;(3)求△BAD的面积.
题目详情

65 |
AB |
AC |
(1)求cos∠BAC的值;
(2)求sin∠CAD的值;
(3)求△BAD的面积.

65 |
AB |
AC |
(1)求cos∠BAC的值;
(2)求sin∠CAD的值;
(3)求△BAD的面积.
65 |
AB |
AC |
(1)求cos∠BAC的值;
(2)求sin∠CAD的值;
(3)求△BAD的面积.
AB |
AC |
▼优质解答
答案和解析
(1)在四边形ABCD中,已知AB=13,AC=10,
•
=50,则有 cos∠BAC=
=
=
.
(2)在△ADC中,AC=10,AD=5,CD=
,cos∠CAD=
=
,∴sin∠CAD=
.
(3)由(1)可得cos∠BAC=
,∴sin∠BAC=
,从而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=
×
+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
AB AB AB•
AC AC AC=50,则有 cos∠BAC=
=
=
.
(2)在△ADC中,AC=10,AD=5,CD=
,cos∠CAD=
=
,∴sin∠CAD=
.
(3)由(1)可得cos∠BAC=
,∴sin∠BAC=
,从而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=
×
+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
•
•
AB AB AB•
AC AC AC|
|•|
| |
|•|
| |
AB AB AB|•|
AC AC AC|=
=
.
(2)在△ADC中,AC=10,AD=5,CD=
,cos∠CAD=
=
,∴sin∠CAD=
.
(3)由(1)可得cos∠BAC=
,∴sin∠BAC=
,从而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=
×
+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
50 50 5013×10 13×10 13×10=
.
(2)在△ADC中,AC=10,AD=5,CD=
,cos∠CAD=
=
,∴sin∠CAD=
.
(3)由(1)可得cos∠BAC=
,∴sin∠BAC=
,从而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=
×
+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
5 5 513 13 13.
(2)在△ADC中,AC=10,AD=5,CD=
,cos∠CAD=
=
,∴sin∠CAD=
.
(3)由(1)可得cos∠BAC=
,∴sin∠BAC=
,从而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=
×
+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
65 65 65,cos∠CAD=
=
,∴sin∠CAD=
.
(3)由(1)可得cos∠BAC=
,∴sin∠BAC=
,从而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=
×
+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
AC2+AD 2−CD 2 AC2+AD 2−CD 2 AC2+AD 2−CD 22+AD 2−CD 22−CD 222AC•AD 2AC•AD 2AC•AD=
,∴sin∠CAD=
.
(3)由(1)可得cos∠BAC=
,∴sin∠BAC=
,从而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=
×
+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
3 3 35 5 5,∴sin∠CAD=
.
(3)由(1)可得cos∠BAC=
,∴sin∠BAC=
,从而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=
×
+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
4 4 45 5 5.
(3)由(1)可得cos∠BAC=
,∴sin∠BAC=
,从而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=
×
+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
5 5 513 13 13,∴sin∠BAC=
,从而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=
×
+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
12 12 1213 13 13,从而sin∠BAD=sin(∠BAC+∠CAD)=sin∠BAC•cos∠CAD+cos∠BAC•sin∠CAD
=
×
+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
12 12 1213 13 13×
3 3 35 5 5+
×
=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
5 5 513 13 13×
4 4 45 5 5=
,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
56 56 5665 65 65,
∴△BAD的面积S=
•AB•AD•sin∠BAD=28.
1 1 12 2 2•AB•AD•sin∠BAD=28.
AB |
AC |
| ||||
|
|
50 |
13×10 |
5 |
13 |
(2)在△ADC中,AC=10,AD=5,CD=
65 |
AC2+AD 2−CD 2 |
2AC•AD |
3 |
5 |
4 |
5 |
(3)由(1)可得cos∠BAC=
5 |
13 |
12 |
13 |
=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
AB |
AC |
| ||||
|
|
50 |
13×10 |
5 |
13 |
(2)在△ADC中,AC=10,AD=5,CD=
65 |
AC2+AD 2−CD 2 |
2AC•AD |
3 |
5 |
4 |
5 |
(3)由(1)可得cos∠BAC=
5 |
13 |
12 |
13 |
=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
| ||||
|
|
AB |
AC |
AB |
AC |
AB |
AC |
AB |
AC |
AB |
AC |
AB |
AC |
50 |
13×10 |
5 |
13 |
(2)在△ADC中,AC=10,AD=5,CD=
65 |
AC2+AD 2−CD 2 |
2AC•AD |
3 |
5 |
4 |
5 |
(3)由(1)可得cos∠BAC=
5 |
13 |
12 |
13 |
=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
50 |
13×10 |
5 |
13 |
(2)在△ADC中,AC=10,AD=5,CD=
65 |
AC2+AD 2−CD 2 |
2AC•AD |
3 |
5 |
4 |
5 |
(3)由(1)可得cos∠BAC=
5 |
13 |
12 |
13 |
=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
5 |
13 |
(2)在△ADC中,AC=10,AD=5,CD=
65 |
AC2+AD 2−CD 2 |
2AC•AD |
3 |
5 |
4 |
5 |
(3)由(1)可得cos∠BAC=
5 |
13 |
12 |
13 |
=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
65 |
AC2+AD 2−CD 2 |
2AC•AD |
3 |
5 |
4 |
5 |
(3)由(1)可得cos∠BAC=
5 |
13 |
12 |
13 |
=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
AC2+AD 2−CD 2 |
2AC•AD |
3 |
5 |
4 |
5 |
(3)由(1)可得cos∠BAC=
5 |
13 |
12 |
13 |
=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
3 |
5 |
4 |
5 |
(3)由(1)可得cos∠BAC=
5 |
13 |
12 |
13 |
=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
4 |
5 |
(3)由(1)可得cos∠BAC=
5 |
13 |
12 |
13 |
=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
5 |
13 |
12 |
13 |
=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
12 |
13 |
=
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
5 |
13 |
4 |
5 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
56 |
65 |
∴△BAD的面积S=
1 |
2 |
1 |
2 |
看了 (2012•江苏二模)如图,...的网友还看了以下:
若S=A(1,1)+A(2,2)+A(3,3)+A(4,4)+.A(2009,2009),则S的个 2020-05-19 …
问即付年金终值S=A{(1+i)^n+1-1/i-1}s=终值a=年金i=利率n=期数公式对么是怎 2020-06-16 …
设实数集S是满足下面两个条件的集合:①1不属于S;②若a属于S,则1\1-a属于S.求证:若a属于 2020-06-18 …
设实数集S是满足下面两个条件的集合:①1不属于S;②若a属于S,则1\1-a属于S.求证:若a属于 2020-06-18 …
关于初等数论的8道题目~谢谢250分1.求证:若a^k≡1(modm),a^n≡1(modm),且 2020-07-13 …
S=a/1-r是一个数学公式什么意思 2020-07-19 …
不等式证明和三角形的关系.1.已知△ABC的外接圆半径R=1,S△ABC=1/4a,b,c是△AB 2020-07-24 …
设实数集S是满足下面两个条件的集合:①:1不属于S;②:若a∈S,则1/(1-a)∈S求证:若a∈ 2020-07-30 …
下证明过程中蕴涵的数学思想是什么s=a+a(1+i)+a(1+i)(1+i)+...+a(1+i)的 2020-11-01 …
Perl匹配下面一个语句出错:$line文件如下ChassisG1234TC80-12M$linem 2020-11-03 …