早教吧作业答案频道 -->其他-->
解分式方程:(1)x−2x−3=12−13−x(2)5−xx−4+14−x=1(3)2x+1−31−x=6x2−1(4)x−2x+2−16x2−4=x+2x−2(5)6x−1+3x=x+5x(x−1)(6)xx−1−2x=1.
题目详情
解分式方程:
(1)
=
−
(2)
+
=1
(3)
−
=
(4)
−
=
(5)
+
=
(6)
−
=1.
=
−
(2)
+
=1
(3)
−
=
(4)
−
=
(5)
+
=
(6)
−
=1.
x−2 x−2 x−3 x−3
1 1 2 2
1 1 3−x 3−x
+
=1
(3)
−
=
(4)
−
=
(5)
+
=
(6)
−
=1.
5−x 5−x x−4 x−4
1 1 4−x 4−x
−
=
(4)
−
=
(5)
+
=
(6)
−
=1.
2 2 x+1 x+1
3 3 1−x 1−x
6 6 x2−1 x2−1 x2−1x2−12−1
−
=
(5)
+
=
(6)
−
=1.
x−2 x−2 x+2 x+2
16 16 x2−4 x2−4 x2−4x2−42−4
x+2 x+2 x−2 x−2
+
=
(6)
−
=1.
6 6 x−1 x−1
3 3 x x
x+5 x+5 x(x−1) x(x−1)
−
=1.
x x x−1 x−1
2 2 x x
(1)
| x−2 |
| x−3 |
| 1 |
| 2 |
| 1 |
| 3−x |
(2)
| 5−x |
| x−4 |
| 1 |
| 4−x |
(3)
| 2 |
| x+1 |
| 3 |
| 1−x |
| 6 |
| x2−1 |
(4)
| x−2 |
| x+2 |
| 16 |
| x2−4 |
| x+2 |
| x−2 |
(5)
| 6 |
| x−1 |
| 3 |
| x |
| x+5 |
| x(x−1) |
(6)
| x |
| x−1 |
| 2 |
| x |
| x−2 |
| x−3 |
| 1 |
| 2 |
| 1 |
| 3−x |
(2)
| 5−x |
| x−4 |
| 1 |
| 4−x |
(3)
| 2 |
| x+1 |
| 3 |
| 1−x |
| 6 |
| x2−1 |
(4)
| x−2 |
| x+2 |
| 16 |
| x2−4 |
| x+2 |
| x−2 |
(5)
| 6 |
| x−1 |
| 3 |
| x |
| x+5 |
| x(x−1) |
(6)
| x |
| x−1 |
| 2 |
| x |
| x−2 |
| x−3 |
| 1 |
| 2 |
| 1 |
| 3−x |
| 5−x |
| x−4 |
| 1 |
| 4−x |
(3)
| 2 |
| x+1 |
| 3 |
| 1−x |
| 6 |
| x2−1 |
(4)
| x−2 |
| x+2 |
| 16 |
| x2−4 |
| x+2 |
| x−2 |
(5)
| 6 |
| x−1 |
| 3 |
| x |
| x+5 |
| x(x−1) |
(6)
| x |
| x−1 |
| 2 |
| x |
| 5−x |
| x−4 |
| 1 |
| 4−x |
| 2 |
| x+1 |
| 3 |
| 1−x |
| 6 |
| x2−1 |
(4)
| x−2 |
| x+2 |
| 16 |
| x2−4 |
| x+2 |
| x−2 |
(5)
| 6 |
| x−1 |
| 3 |
| x |
| x+5 |
| x(x−1) |
(6)
| x |
| x−1 |
| 2 |
| x |
| 2 |
| x+1 |
| 3 |
| 1−x |
| 6 |
| x2−1 |
| x−2 |
| x+2 |
| 16 |
| x2−4 |
| x+2 |
| x−2 |
(5)
| 6 |
| x−1 |
| 3 |
| x |
| x+5 |
| x(x−1) |
(6)
| x |
| x−1 |
| 2 |
| x |
| x−2 |
| x+2 |
| 16 |
| x2−4 |
| x+2 |
| x−2 |
| 6 |
| x−1 |
| 3 |
| x |
| x+5 |
| x(x−1) |
(6)
| x |
| x−1 |
| 2 |
| x |
| 6 |
| x−1 |
| 3 |
| x |
| x+5 |
| x(x−1) |
| x |
| x−1 |
| 2 |
| x |
| x |
| x−1 |
| 2 |
| x |
▼优质解答
答案和解析
(1)方程的两边同乘2(x-3),得
2(x-2)=x-3+2,
解得x=3.
检验:把x=3代入2(x-3)=0.
x=3是原方程的增根,
∴原方程无解.
(2)方程的两边同乘(x-4),得
5-x-1=x-4,
解得x=4.
检验:把x=4代入(x-4)=0.
x=4是原方程的增根,
∴原方程无解.
(3)方程的两边同乘(x+1)(x-1),得
2(x-1)+3(x+1)=6,
解得x=1.
检验:把x=1代入(x+1)(x-1)=0.
x=1是原方程的增根,
∴原方程无解.
(4)方程的两边同乘(x+2)(x-2),得
(x-2)22-16=(x+2)22,
解得x=-2.
检验:把x=-2代入(x+2)(x-2)=0.
x=-2是原方程的增根,
∴原方程无解.
(5)方程的两边同乘x(x-1),得
6x+3(x-1)=x+5,
解得x=1.
检验:把x=1代入x(x-1)=0.
x=1是原方程的增根,
∴原方程无解.
(6)方程的两边同乘x(x-1),得
x22-2(x-1)=x(x-1),
解得x=2.
检验:把x=2代入x(x-1)=2≠0.
∴原方程的解为:x=2.
2(x-2)=x-3+2,
解得x=3.
检验:把x=3代入2(x-3)=0.
x=3是原方程的增根,
∴原方程无解.
(2)方程的两边同乘(x-4),得
5-x-1=x-4,
解得x=4.
检验:把x=4代入(x-4)=0.
x=4是原方程的增根,
∴原方程无解.
(3)方程的两边同乘(x+1)(x-1),得
2(x-1)+3(x+1)=6,
解得x=1.
检验:把x=1代入(x+1)(x-1)=0.
x=1是原方程的增根,
∴原方程无解.
(4)方程的两边同乘(x+2)(x-2),得
(x-2)22-16=(x+2)22,
解得x=-2.
检验:把x=-2代入(x+2)(x-2)=0.
x=-2是原方程的增根,
∴原方程无解.
(5)方程的两边同乘x(x-1),得
6x+3(x-1)=x+5,
解得x=1.
检验:把x=1代入x(x-1)=0.
x=1是原方程的增根,
∴原方程无解.
(6)方程的两边同乘x(x-1),得
x22-2(x-1)=x(x-1),
解得x=2.
检验:把x=2代入x(x-1)=2≠0.
∴原方程的解为:x=2.
看了 解分式方程:(1)x−2x−...的网友还看了以下:
如图,点A在反比例函数y=2x(x>0)图象上,点B在反比例函数y=−8x(x<0)的图象上,且∠ 2020-04-08 …
用适当的方法解方程①x2+3x-4=0;②(y-3)2+3(y-3)+2=0③(x-1)(x+3) 2020-05-13 …
解分式方程1/x-5-1/x-6=1/x-8-1/x-9仿照此法,你能接下面的方程吗试试看x-4/ 2020-05-16 …
解方程:(X÷2+24)÷6=(X÷2-24)÷4X=240方程的解知道了,我是需要具体过程 2020-06-02 …
(1)(x/2y)²乘y/2x-x/y²÷2y²/x(2)x+1/x乘(2x/x+1)²-(1/x 2020-06-03 …
定义域[-1,1]的奇函数f(x)满足f(x)=f(x-2),且当x∈(0,1)时,f(x)=2x 2020-06-08 …
如图,点A在双曲线y=2x(x>0)上,点B在双曲线y=4x(x>0)上,且AB∥y轴,点P是y轴 2020-07-20 …
如图,点A、C都在函数y=2x(x>0)的图象上,点B、D都在x轴上,且△OAB、△BCD都是等腰 2020-07-26 …
绝对值方程式X^2+5XY-5X-15Y+6=|X-6Y|满足正整数一对X,Y的值当中,求X是最小 2020-07-30 …
刚补课补到数列,有些还不是太懂.令f(x)=2x/x+1,利用课本中推导等差数列的前n项和公式的方法 2020-11-28 …