早教吧作业答案频道 -->其他-->
设A为三阶实对称矩阵,α1=(a,-a,1)T是Ax=0的解,α2=(a,1,-a)T是(A+E)x=0的解,则常数a=.
题目详情
设A为三阶实对称矩阵,α1=(a,-a,1)T是Ax=0的解,α2=(a,1,-a)T是(A+E)x=0的解,则常数a=______.
▼优质解答
答案和解析
由α1=(a,-a,1)T是Ax=0的解,知α1是A的特征值0的特征向量;
由α2=(a,1,-a)T是(A+E)x=0的解,知α2是A的特征值-1的特征向量
∴α1=(a,-a,1)T与α2=(a,1,-a)T正交的
∴a2-2a=0
即a=0或2
由α2=(a,1,-a)T是(A+E)x=0的解,知α2是A的特征值-1的特征向量
∴α1=(a,-a,1)T与α2=(a,1,-a)T正交的
∴a2-2a=0
即a=0或2
看了 设A为三阶实对称矩阵,α1=...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
设f(x)是R上的奇函数,且对任意的实数a,b当a+b≠0时,都有f(a)+f(b)a+b>0(1 2020-06-08 …
设f(x)是R上的奇函数,且对任意的实数a,b当a+b≠0时,都有f(a)+f(b)a+b>0(1 2020-06-09 …
设f(x)是R上的奇函数,且对任意的实数a,b当a+b≠0时,都有f(a)+f(b)a+b>0(1 2020-06-09 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
若集合A={a|x^2-2x+a=0有实数根,B={ax^2-x+1=0}没有实数根,求A∩B若集 2020-08-01 …
A={a|x2-2x+a=0有实数根},B={a|ax2-x|1=0没有实根},求A∩BA∪B又点做 2020-12-03 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …