早教吧作业答案频道 -->数学-->
设f(x)是R上的奇函数,且对任意的实数a,b当a+b≠0时,都有f(a)+f(b)a+b>0(1)若a>b,试比较f(a),f(b)的大小;(2)若存在实数x∈[12,32]使得不等式f(x-c)+f(x-c2)>0成立,试求实
题目详情
设f(x)是R上的奇函数,且对任意的实数a,b当a+b≠0时,都有
>0
(1)若a>b,试比较f(a),f(b)的大小;
(2)若存在实数x∈[
,
]使得不等式f(x-c)+f(x-c2)>0成立,试求实数c的取值范围.
| f(a)+f(b) |
| a+b |
(1)若a>b,试比较f(a),f(b)的大小;
(2)若存在实数x∈[
| 1 |
| 2 |
| 3 |
| 2 |
▼优质解答
答案和解析
(1)∵f(x)是R上的奇函数,
∴
=
>0,
又∵a>b,∴a-b>0,∴f(a)-f(b)>0,
即f(a)>f(b)…(6分)
(2)由(1)知,a>b时,都有f(a)>f(b),
∴f(x)在R上单调递增,
∵f(x)为奇函数,
∴f(x-c)+f(x-c2)>0等价于f(x-c)>f(c2-x)
∴不等式等价于x-c>c2-x,即c2+c<2x,
∵存在实数x∈[
,
]使得不等式c2+c<2x成立,
∴c2+c<3,即c2+c-3<0,
解得,−
<c<
,
故c的取值范围为(−
,
).
∴
| f(a)−f(b) |
| a−b |
| f(a)+f(−b) |
| a+(−b) |
又∵a>b,∴a-b>0,∴f(a)-f(b)>0,
即f(a)>f(b)…(6分)
(2)由(1)知,a>b时,都有f(a)>f(b),
∴f(x)在R上单调递增,
∵f(x)为奇函数,
∴f(x-c)+f(x-c2)>0等价于f(x-c)>f(c2-x)
∴不等式等价于x-c>c2-x,即c2+c<2x,
∵存在实数x∈[
| 1 |
| 2 |
| 3 |
| 2 |
∴c2+c<3,即c2+c-3<0,
解得,−
1+
| ||
| 2 |
| ||
| 2 |
故c的取值范围为(−
1+
| ||
| 2 |
| ||
| 2 |
看了 设f(x)是R上的奇函数,且...的网友还看了以下:
函数y=x+ax(x>0)有如下性质:若常数a>0,则函数在(0,a]上是减函数,在[a,+∞)上 2020-05-13 …
设f(x)是R上的奇函数,且对任意的实数a,b当a+b≠0时,都有f(a)+f(b)a+b>0(1 2020-06-08 …
设f(x)是R上的奇函数,且对任意的实数a,b当a+b≠0时,都有f(a)+f(b)a+b>0(1 2020-06-09 …
设f(x)是R上的奇函数,且对任意的实数a,b当a+b≠0时,都有f(a)+f(b)a+b>0(1 2020-06-09 …
如果a,b满足a+b>0,ab<0,则下列各式正确的是()A.|a|>|b|B.当a>0,b<0时 2020-07-09 …
用“>”或“<”填空:(1)当x>0,y0时,xy>0;(2)当x>0,y0时,xy<0;(3)当 2020-07-12 …
已知f(x)是定义在R上的恒不为零的函数,且对于任意的x,y∈R都满足f(x)•f(y)=f(x+ 2020-07-15 …
已知函数f(x)是R上的奇函数,且当x>0时,f(x)=x2-2x+1,则f(x)在R上的表达式为 2020-07-23 …
人教版高中数学必修一求教定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任 2020-10-31 …
设f(x)是R上的奇函数,且对任意的实数a,b,当a+b≠0时,都有f(a)+f(b)a+b>0.( 2020-12-05 …