早教吧作业答案频道 -->数学-->
请问如果f(x),g(x)都在点x0处间断,那么f(x)+g(x)和f(x)-g(x)在点x0处的连续性是怎样呢?
题目详情
请问如果f(x),g(x)都在点x0处间断,那么f(x)+g(x)和f(x)-g(x)在点x0处的连续性是怎样呢?
▼优质解答
答案和解析
可能间断也可能连续
连续的例子,
如果这两个函数满足f=g那么f-g=0必然在x0处连续
同样的,如果满足f=-g那么f+g=0必然在x0处连续
但是f+g和f-g不可能同时在x0,下面反证,
若f+g,f-g都在x0处连续,则
(f+g)(x0+)=(f+g)(x0-),即f(x0+)-f(x0-)=-(g(x0+)-g(x0-))
(f-g)(x0+)=(f-g)(x0-),即f(x0+)-f(x0-)=g(x0+)-g(x0-)
则f(x0+)-f(x0-)=g(x0+)-g(x0-)=0
上式说明f,g在x0处连续,与题设矛盾
其中f(x0+)表示f在x0处的右极限,f(x0-)表示在x0处的左极限
间断的例子
令f(x)=0,x<0;f(x)=1,x>=0
g(x)=0,x<0;g(x)=2,x>=0
f,g在0处间断,且f+g,f-g在0处都间断
连续的例子,
如果这两个函数满足f=g那么f-g=0必然在x0处连续
同样的,如果满足f=-g那么f+g=0必然在x0处连续
但是f+g和f-g不可能同时在x0,下面反证,
若f+g,f-g都在x0处连续,则
(f+g)(x0+)=(f+g)(x0-),即f(x0+)-f(x0-)=-(g(x0+)-g(x0-))
(f-g)(x0+)=(f-g)(x0-),即f(x0+)-f(x0-)=g(x0+)-g(x0-)
则f(x0+)-f(x0-)=g(x0+)-g(x0-)=0
上式说明f,g在x0处连续,与题设矛盾
其中f(x0+)表示f在x0处的右极限,f(x0-)表示在x0处的左极限
间断的例子
令f(x)=0,x<0;f(x)=1,x>=0
g(x)=0,x<0;g(x)=2,x>=0
f,g在0处间断,且f+g,f-g在0处都间断
看了 请问如果f(x),g(x)都...的网友还看了以下:
这两个函数是否相等?f(x)=x+1f(-x)=-x+1函数图像是否是一样的?本人认为是不相等的, 2020-05-24 …
极限存在如果limf(x)存在,但limg(x)不存在,那么lim[f(x)+g(x)]存不存在? 2020-06-12 …
求积分保序性定理的证明证明f(x)在一闭区间上恒大于g(x),那么f(x)在该区间上的积分大于g( 2020-06-20 …
请问如果f(x),g(x)都在点x0处间断,那么f(x)+g(x)和f(x)-g(x)在点x0处的 2020-07-15 …
已知fx*gx的导函数是f'x*gx+fx*g'x,那么fx/gx的导函数是什么. 2020-07-16 …
复合函数的反函数(高中)已知y=f(g(x)),那么y的反函数能否用f(x),g(x)表示? 2020-08-01 …
高等代数多项式定理的逆定理证明没看懂?逆定理:设p(x)是次数大于零的多项式,如果对于任何多项式f 2020-08-01 …
如果k(x)=f[g(x)],那k(-x)=?这负号该在复合函数哪个位置?说一下这类式子的逻辑.有 2020-08-02 …
复合函数的自变量指的是x吗?还有就是复合函数y=f[g(x)]中的g(x)的取值范围和外函数f(x) 2020-11-10 …
同学们看这题目是复合函数的问题吗,怎么这般解法?已知g(x)=1-2x,f[g(x)]=(1-x^2 2020-11-29 …