早教吧作业答案频道 -->数学-->
已知数列an,bn,满足a1=2,2an=1+2anan+1,bn=an-1,求证数列bn/1是等差数列
题目详情
已知数列an,bn,满足a1=2,2an=1+2anan+1,bn=an-1,求证数列bn/1是等
差数列
差数列
▼优质解答
答案和解析
做这样的题,应该先在草纸上把要证的结论写出来,化简一下,然后看看与已知条件有什么联系,
这样一来,你就知道从哪下手书写过程了.
{1/bn}是等差数列,就是 1/[a(n+1)-1]-1/(an-1) 为常数,设为 d ,
则 (an-1)-[a(n+1)-1]=d[a(n+1)-1]*(an-1) ,
展开得 an-a(n+1)=d*[a(n+1)*an-a(n+1)-an+1] ,
如果 d=1 ,那么式子就化为 2an=1+an*a(n+1) .
这不正是已知的等式么?(可惜你把已知条件打错了)
往后你该知道怎么写过程了吧?
算了,还是我帮你写出来吧.我好人做到底,记得加分哦.
由已知得 an-a(n+1)=an*a(n+1)-an-a(n+1)+1=(an-1)*[a(n+1)-1] ,
即 (an-1)-[a(n+1)-1]=(an-1)*[a(n+1)-1] ,
两边同除以 (an-1)*[a(n+1)-1] 得 1/[a(n+1)-1]-1/(an-1)=1 ,
即 1/b(n+1)-1/bn=1 ,
这说明数列{1/bn}是首项为 1/(a1-1)=1 ,公差为 1 的等差数列 .
(顺便可得 1/bn=n ,bn=1/n ,即 an-1=1/n ,所以 an=1+1/n=(n+1)/n).
这样一来,你就知道从哪下手书写过程了.
{1/bn}是等差数列,就是 1/[a(n+1)-1]-1/(an-1) 为常数,设为 d ,
则 (an-1)-[a(n+1)-1]=d[a(n+1)-1]*(an-1) ,
展开得 an-a(n+1)=d*[a(n+1)*an-a(n+1)-an+1] ,
如果 d=1 ,那么式子就化为 2an=1+an*a(n+1) .
这不正是已知的等式么?(可惜你把已知条件打错了)
往后你该知道怎么写过程了吧?
算了,还是我帮你写出来吧.我好人做到底,记得加分哦.
由已知得 an-a(n+1)=an*a(n+1)-an-a(n+1)+1=(an-1)*[a(n+1)-1] ,
即 (an-1)-[a(n+1)-1]=(an-1)*[a(n+1)-1] ,
两边同除以 (an-1)*[a(n+1)-1] 得 1/[a(n+1)-1]-1/(an-1)=1 ,
即 1/b(n+1)-1/bn=1 ,
这说明数列{1/bn}是首项为 1/(a1-1)=1 ,公差为 1 的等差数列 .
(顺便可得 1/bn=n ,bn=1/n ,即 an-1=1/n ,所以 an=1+1/n=(n+1)/n).
看了 已知数列an,bn,满足a1...的网友还看了以下:
已知数列an是各项均不为0的等差数列,Sn为其前n项和,且满足S2n-1=1/2an^2,数列bn 2020-04-09 …
求一数列.高2.a(n+1)=2an/2an+1已知a1=1a(n+1)=2an/2an+1求数列 2020-04-25 …
已知各项均为正数的数列[an]满足2an+1^2+3an+1an-2an^2=0,且a3+1/32 2020-05-13 …
设数列an满足a(n+1)=2(an)+n/2(n∈N+),且a1=2,则a20=设数列an满足a 2020-05-17 …
已知数列{An}满足A1=1,A2=3,An+2=3An+1-2An(n属于N*)问:1,证明{A 2020-05-21 …
数列a1=1/2,a(n-1)+1=2an(n≥2)求数列An的通项公式若数列Bn满足:2b1+2 2020-05-21 …
下面一道有趣的数列大题,大家有空看下吧:数列{an}恒满足等式a(n+1)=1/2an+√3/2× 2020-07-23 …
对于数列{an},定义数列{△an}满足:△an=an+1-an,(n∈N*),定义数列{△2an} 2020-12-01 …
1.数列an满足a1=1,且Sn=2an+n,求数列an的通项公式.1.数列an满足a1=1,且Sn 2020-12-05 …
已知数列An满足A1=1,An=An-1/2An-1+1(n∈正整数,n≥2),数列bn满足关系式B 2020-12-24 …