早教吧作业答案频道 -->数学-->
已知数列An前n项和Sn=2An-3·2^n+4,求证数列{An/(2^n)}为等差数列并求数列An的通项公式另(2):设Tn为数列{Sn-4}的前n项和,求Tn
题目详情
已知数列An前n项和Sn=2An-3·2^n+4,求证数列{An/(2^n)}为等差数列并求数列An的通项公式
另(2):设Tn为数列{Sn-4}的前n项和,求Tn
另(2):设Tn为数列{Sn-4}的前n项和,求Tn
▼优质解答
答案和解析
(1)
s1=a1=2a1-3*2+4,得a1=2
sn=2an-3*2^n+4
s(n-1)=2a(n-1)-3*2^(n-1)+4
sn-s(n-1)=2an-3*2^n+4-2a(n-1)+3*2^(n-1)-4=an
得an-3*2^n=2a(n-1)-3*2^(n-1)
(an/2^n)-3=[a(n-1)/2^(n-1)]-(3/2)
得an/2^n=[a(n-1)/2^(n-1)]+(3/2),a1/2=1
于是数列{an/2^n}是以1为首项,(3/2)为公差的等差数列
an/2^n=(3n-1)/2
an=(3n-1)*2^(n-1)
(2)
sn=2an-3*2^n+4=(3n-4)*2^n+4
sn-4=(3n-4)*2^n
Tn=-1*2+2*2²+5*2³+8*2^4+……+(3n-4)*2^n
2Tn=-1*2²+2*2³+5*2^4+8*2^5+……+(3n-4)*2^(n+1)
Tn-2Tn=-1*2+3(2²+2³+2^4+……+2^n)-(3n-4)*2^(n+1)【错位相减】
-Tn=-(3n-7)*2^(n+1)-14
Tn=(3n-7)*2^(n+1)+14
s1=a1=2a1-3*2+4,得a1=2
sn=2an-3*2^n+4
s(n-1)=2a(n-1)-3*2^(n-1)+4
sn-s(n-1)=2an-3*2^n+4-2a(n-1)+3*2^(n-1)-4=an
得an-3*2^n=2a(n-1)-3*2^(n-1)
(an/2^n)-3=[a(n-1)/2^(n-1)]-(3/2)
得an/2^n=[a(n-1)/2^(n-1)]+(3/2),a1/2=1
于是数列{an/2^n}是以1为首项,(3/2)为公差的等差数列
an/2^n=(3n-1)/2
an=(3n-1)*2^(n-1)
(2)
sn=2an-3*2^n+4=(3n-4)*2^n+4
sn-4=(3n-4)*2^n
Tn=-1*2+2*2²+5*2³+8*2^4+……+(3n-4)*2^n
2Tn=-1*2²+2*2³+5*2^4+8*2^5+……+(3n-4)*2^(n+1)
Tn-2Tn=-1*2+3(2²+2³+2^4+……+2^n)-(3n-4)*2^(n+1)【错位相减】
-Tn=-(3n-7)*2^(n+1)-14
Tn=(3n-7)*2^(n+1)+14
看了 已知数列An前n项和Sn=2...的网友还看了以下:
:已知 a2 +ab+b2 =3 且a、b为实数设k= a2 -ab+b2 的最大值为m ,最小值 2020-04-05 …
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
[20分][高一不等式]已知a,b,m,n∈R+,设p=Sqrt(ab)+Sqrt(cd),q=S 2020-05-23 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
1.已知A,B,C为正数,N是正整数,且f(n)=lg[(An+Bn+Cn)/3],求证:2f(n 2020-07-30 …
1、已知数列{An}满足:A1=1,A2=1/2,且[3+(-1)^n]A-2An+2[(-1)^ 2020-08-01 …
已知A是数域P上的n*n矩阵,设W1={AX|X∈P^n},W2={X|X∈P^n,AX=0}证明: 2020-10-31 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
高二数学问题2已知数列{a[n]}中,a1=1,a2=r(r大于0)且数列{a[n]*a[n+1]} 2020-11-29 …
1.已知m^2-5m-1=0,则2m^2-5m+m^-2=?2.已知非负数a.b.c满足条件a+b= 2020-12-07 …