早教吧作业答案频道 -->其他-->
(2013•通州区一模)已知:如图,AB是⊙O的直径,AC是弦.过点A作∠BAC的角平分线,交⊙O于点D,过点D作AC的垂线,交AC的延长线于点E.(1)求证:直线ED是⊙O的切线;(2)连接EO,交AD于
题目详情

(1)求证:直线ED是⊙O的切线;
(2)连接EO,交AD于点F,若5AC=3AB,求
EO |
FO |
▼优质解答
答案和解析
(1)证明:连接OD.

∵OD=OA,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠ODA=∠CAD,;
∴AE∥OD,
∵DE⊥AE,
∴ED⊥DO,
∵点D在⊙O上,
∴ED是⊙O的切线;
(2)连接CB,过点O作OG⊥AC于点G,

∵AB是⊙O的直径,
∴∠ACB=90°,
∵OG⊥AC,
∴OG∥CB,
∴
=
,
∵5AC=3AB,
∴
=
,
设AG=3x,AO=5x,
∵DE⊥AE,ED⊥DO,
∴四边形EGOD是矩形,
∴EG=OD,AE∥OD,
∴DO=5x,GE=5x,AE=8x,
∵AE∥OD,
∴∠EAD=∠FDO,
∵∠AFE=∠DFO
∴△AEF∽△DFO,
∴
=
,
∴
=
,
∴
=
.

∵OD=OA,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠ODA=∠CAD,;
∴AE∥OD,
∵DE⊥AE,
∴ED⊥DO,
∵点D在⊙O上,
∴ED是⊙O的切线;
(2)连接CB,过点O作OG⊥AC于点G,

∵AB是⊙O的直径,
∴∠ACB=90°,
∵OG⊥AC,
∴OG∥CB,
∴
AG |
AO |
AC |
AB |
∵5AC=3AB,
∴
AG |
AO |
3 |
5 |
设AG=3x,AO=5x,
∵DE⊥AE,ED⊥DO,
∴四边形EGOD是矩形,
∴EG=OD,AE∥OD,
∴DO=5x,GE=5x,AE=8x,
∵AE∥OD,
∴∠EAD=∠FDO,
∵∠AFE=∠DFO
∴△AEF∽△DFO,
∴
EF |
FO |
AE |
OD |
∴
EF |
FO |
8 |
5 |
∴
EO |
FO |
13 |
5 |
看了 (2013•通州区一模)已知...的网友还看了以下:
CAD:三条直线,其中a,b两条直线相交且角度知道但长度不知道;另一条直线c知道长度和角度,怎么确 2020-05-13 …
已知直线l:y=kx+1交曲线C:y=ax^2(a>0)于P、Q两点,M为PQ中点,分别过P、Q两 2020-05-15 …
已知抛物线y=ax²+bx+c与x轴交于A,B两点(A点在B点左侧),与y轴交于点C(0,3),对 2020-05-15 …
如图 已知抛物线y=x2+bx+c与x轴交与A.B俩点【A在B点左侧】与y轴交与点C【0,-3】如 2020-05-16 …
如图:已知抛物线与X轴交于A、B两点,与Y轴正半轴交于C点,直线X=1是抛物线的对称轴,如图:已知 2020-06-03 …
已知抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C已知抛 2020-07-20 …
已知抛物线y已知抛物线y=x2+bx+c于x轴只有一个交点,且交点为A(2,0)已知抛物线y=x2 2020-07-29 …
抛物线y=ax2+bx+c交x轴于A、B两点,交y于点C,已知抛物线的对称轴为x=1B(3,0),C 2020-11-27 …
如图,在四边形abcd中,角b,角c的平分线交于p点,若已知交a=110度,角d=100度,求角p的 2020-11-27 …
(2012•丰台区模拟)如图所示为北京奥运会修建的从东直门到首都机场T3航站楼的轨道交通线的一部分. 2020-11-27 …