早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.(1)先判断函数y=f(x)的单调性再给出证明;(2)证明函数y=f(x)是奇函数.

题目详情
已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.
(1)先判断函数y=f(x)的单调性再给出证明;
(2)证明函数y=f(x)是奇函数.
▼优质解答
答案和解析
证明:(1)设x1>x2,则x1-x2>0,而f(a+b)=f(a)+f(b)
∴f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)<0
∴函数y=f(x)是R上的减函数;
(2)由f(a+b)=f(a)+f(b)得f(x-x)=f(x)+f(-x),
即f(x)+f(-x)=f(0),而f(0)=0.
∴f(-x)=-f(x),
即函数y=f(x)是奇函数.