早教吧作业答案频道 -->数学-->
选修4-5:不等式选讲设a,b,c为不全相等的正数,证明:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)
题目详情
选修4-5:不等式选讲
设a,b,c为不全相等的正数,证明:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)
设a,b,c为不全相等的正数,证明:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)
▼优质解答
答案和解析
证明:2(a3+b3+c3)-[a2(b+c)+b2(a+c)+c2(a+b)]
=(a3-a2b)+(a3-a2c)+(b3-b2a)+(b3-b2c)+(c3-c2a)+(c3-c2b)
=a2(a-b)+a2(a-c)+b2(b-a)+b2(b-c)+c2(c-a)+c2(c-b)
=(a-b)2(a+b)+(a-c)2(a+c)+(b-c)2(b+c)
∵a,b,c为不全相等的正数,
∴(a-b)2(a+b)+(a-c)2(a+c)+(b-c)2(b+c)>0
∴2(a3+b3+c3)-[a2(b+c)+b2(a+c)+c2(a+b)]>0
∴2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).
=(a3-a2b)+(a3-a2c)+(b3-b2a)+(b3-b2c)+(c3-c2a)+(c3-c2b)
=a2(a-b)+a2(a-c)+b2(b-a)+b2(b-c)+c2(c-a)+c2(c-b)
=(a-b)2(a+b)+(a-c)2(a+c)+(b-c)2(b+c)
∵a,b,c为不全相等的正数,
∴(a-b)2(a+b)+(a-c)2(a+c)+(b-c)2(b+c)>0
∴2(a3+b3+c3)-[a2(b+c)+b2(a+c)+c2(a+b)]>0
∴2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).
看了 选修4-5:不等式选讲设a,...的网友还看了以下:
已知a,b,c成等比数列,如果a,x,b和b,y,c都成等差数列,则a/x + c/y=?下面是某 2020-05-16 …
因式分解a3(b-c)+b3(c-a)+c3(a-b)如果用待定系数法解,得a3(b-c)+b3( 2020-05-16 …
设a,b,c为满足a+b+c=1的正实数,证明:a3√1+b-c+b3√1+c-a+c3√1+a- 2020-05-16 …
选修4-5:不等式选讲设a,b,c为不全相等的正数,证明:2(a3+b3+c3)>a2(b+c)+ 2020-07-12 …
某地海拔高度为75米,如果以此地为标准,测的A地的高度161米,B地的高度是-13米.C地的高度- 2020-07-18 …
以X,Y为边长作一长方形,A,C表示长方形面积和周长,求A,C的相关系数. 2020-08-02 …
数学题目求解若a2+b2=c2,(a,b,c∈R),判断a3+b3与c3的大小关系。A.a3+b3= 2020-10-31 …
1、如图,直线a和直线c相交成直角,所以直线a和直线c互相垂直,记作a⊥c;相互垂直的直线还有直线b 2020-11-02 …
某地海拔高度为75米,如果以此地为标准,测的A地的高度161米,B地的高度是-13米.C地的高度-1 2020-11-17 …
1.有6个被12所除得的余数相同的自然数,它们的连乘积为971425.则这6个自然数之和最小值是() 2020-11-18 …