早教吧作业答案频道 -->数学-->
证明题:证明当n是一个整数且n>2时,方程x^n+y^n=z^n无正整数x,y,z的解.
题目详情
证明题:证明当n是一个整数且n>2时,方程x^n+y^n=z^n无正整数x,y,z的解.
▼优质解答
答案和解析
费马最后定理:当n是一个整数且n>2时,方程x^n+y^n=z^n无正整数x,y,z的解
Euler证明的n=3,4的情形,对于该问题,只需证明n为素数的情形.
谷山-志村定理"所有Q上的椭圆曲线是模的"蕴含该问题.Kummer为了证明该问题,引入了Q(ζ)以及理想的概念,并通过研究其中的素数分解证明了Kummer判别法成立情形下的费马大定理.在1995年,安德鲁·怀尔斯和理查·泰勒证明了谷山-志村定理的一个特殊情况(半稳定椭圆曲线的情况),这个特殊情况足以证明费尔马大定理.完整的证明最后于1999年由Breuil、Conrad、Diamond和Taylor作出,他们在怀尔斯的基础上,一块一块的逐步证明剩下的情况直到全部完成.
如果你想读懂怀尔斯的证明,你需要读以下的书:
高等数学,线性代数,近世代数,初等数论==>代数数论,包括模形式,椭圆曲线,类域论,岩泽理论等
Euler证明的n=3,4的情形,对于该问题,只需证明n为素数的情形.
谷山-志村定理"所有Q上的椭圆曲线是模的"蕴含该问题.Kummer为了证明该问题,引入了Q(ζ)以及理想的概念,并通过研究其中的素数分解证明了Kummer判别法成立情形下的费马大定理.在1995年,安德鲁·怀尔斯和理查·泰勒证明了谷山-志村定理的一个特殊情况(半稳定椭圆曲线的情况),这个特殊情况足以证明费尔马大定理.完整的证明最后于1999年由Breuil、Conrad、Diamond和Taylor作出,他们在怀尔斯的基础上,一块一块的逐步证明剩下的情况直到全部完成.
如果你想读懂怀尔斯的证明,你需要读以下的书:
高等数学,线性代数,近世代数,初等数论==>代数数论,包括模形式,椭圆曲线,类域论,岩泽理论等
看了 证明题:证明当n是一个整数且...的网友还看了以下:
证明题:证明当n是一个整数且n>2时,方程x^n+y^n=z^n无正整数x,y,z的解. 2020-04-27 …
证明当n是一个整数且n>2时,方程x^n+y^n=z^n无正整数x,y,z的解. 2020-04-27 …
数列{an}的前n项和Sn=-n²;,数列{bn}满足b1=2,bn+1=3bn-t(n-1),已 2020-05-16 …
设x>y>z,n为整数,且1/x-y + 1/y-z ≥ n/x-z恒成立,那么n最大值多少?设x 2020-06-27 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
数列题,快,在线等,谢谢数列{an}的前n项和Sn=-n²,数列{bn}满足b1=2,bn+1=3 2020-07-20 …
证明关于x,y,z的方程,x^n+y^n=z^n(n为大于2的整数)没有正整数解 2020-07-30 …
给出下列命题(1)实数的共轭复数一定是实数;(2)满足|z-i|+|z+i|=2的复数z点的轨迹是 2020-07-30 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
定义一种对正数n的“F”运算:一、当n为奇数时结果为3n+5;二、当n为偶数时,结果为n/2^k(其 2020-12-05 …