早教吧作业答案频道 -->数学-->
设x>y>z,n为整数,且1/x-y + 1/y-z ≥ n/x-z恒成立,那么n最大值多少?设x>y>z,n为整数,且1/x-y + 1/y-z ≥ n/x-z恒成立,那么n最大值多少?
题目详情
设x>y>z,n为整数,且1/x-y + 1/y-z ≥ n/x-z恒成立,那么n最大值多少?
设x>y>z,n为整数,且1/x-y + 1/y-z ≥ n/x-z恒成立,那么n最大值多少?
设x>y>z,n为整数,且1/x-y + 1/y-z ≥ n/x-z恒成立,那么n最大值多少?
▼优质解答
答案和解析
n的最大值为4
解法:
∵1/(x-y)+1/(y-z)≥n/(x-z)
(不等式两边同时乘以(x-z) 由x>y>z得x-y>0,y-z>0,x-z>0)
∴(x-z)/(x-y)+(x-z)/(y-z)≥n(再通分)
∴(x-z)*(x-z)/{(x-y)*(y-z)}≥n
此时令x-y=a,y-z=b,则显然(a+b)*(a+b)=(x-z)*(x-z)
上式就变成了(a+b)*(a+b)/(a*b)≥n
这时利用均值不等式可知n最大可取4 当且仅当a=b(即x-y=y-z)时成立
希望对你有所帮助
解法:
∵1/(x-y)+1/(y-z)≥n/(x-z)
(不等式两边同时乘以(x-z) 由x>y>z得x-y>0,y-z>0,x-z>0)
∴(x-z)/(x-y)+(x-z)/(y-z)≥n(再通分)
∴(x-z)*(x-z)/{(x-y)*(y-z)}≥n
此时令x-y=a,y-z=b,则显然(a+b)*(a+b)=(x-z)*(x-z)
上式就变成了(a+b)*(a+b)/(a*b)≥n
这时利用均值不等式可知n最大可取4 当且仅当a=b(即x-y=y-z)时成立
希望对你有所帮助
看了 设x>y>z,n为整数,且1...的网友还看了以下:
1.函数y=根号下x=4/x=2定义域是?2.若函数f(x+1)定义域为(-1/2,2),求f(x 2020-05-13 …
设函数f(x)定义域为D={x|1/x^2大于等于9/16},且当x>0时,f(x)单调递增,对于 2020-05-20 …
函数y=sin(x²+x+1)的值域是令t=x²+x+1=(x+1/2)²+3/4≥3/4∴y=s 2020-05-22 …
1.已知函数f(x)的图像与函数y=x+1/x的图像关于点(1,0)对称,则f(x)=2.奇函数f 2020-07-17 …
函数的解析式及定义域1)已知f(x+1/x)=x³+1/x³,求f(x)2)已知f(2/x+1)= 2020-07-18 …
设a、b、c均为不等于1的正数,x、y、z、都是有理数,且a^x=b^y=c^z,1/x+1/y+ 2020-07-19 …
复合函数定义域求值问题如何解?例如:1.g(x)=1/x,f(x)=2x+1(x∈(﹣1,2)), 2020-07-25 …
已知x,y,z满足x+1/y=3,y+1/z=1,z+1/x=7/3,则xyz的值为多少?x+1/y 2020-10-31 …
已知x∧3+y∧3+6xy=8,求x+y的值已知x∧2-3x+1=0.求x∧10+x∧8+x∧2+1 2020-11-07 …
设x,y,z是三个非零数,且满足1/x+1/y+1/z=2,1/x*2+1/y*2+1/z*2=1证 2020-12-27 …