早教吧作业答案频道 -->英语-->
英语翻译1每天少吸一点烟,你就有可能会永远戒掉烟.{forgood}2他的除了脸上和双手受伤以外,两条腿也断了.{apartfrom}3他有很多问题,但总的说来,他是个好演员.{allinall}4你必须对你刚才所
题目详情
英语翻译
1 每天少吸一点烟,你就有可能会永远戒掉烟.{for good}
2 他的除了脸上和双手受伤以外,两条腿也断了.{apart from}
3他有很多问题,但总的说来,他是个好演员.{all in all}
4 你必须对你刚才所说的话负责.{answer for}
5他们在划船比赛中获得了一枚金牌.{carry off}
6 我无法以不到30页纸的篇幅写出和平会谈的总结.{wrap up}
1 每天少吸一点烟,你就有可能会永远戒掉烟.{for good}
2 他的除了脸上和双手受伤以外,两条腿也断了.{apart from}
3他有很多问题,但总的说来,他是个好演员.{all in all}
4 你必须对你刚才所说的话负责.{answer for}
5他们在划船比赛中获得了一枚金牌.{carry off}
6 我无法以不到30页纸的篇幅写出和平会谈的总结.{wrap up}
▼优质解答
答案和解析
1 You would quitting smoking if you smoke less every day for good.
2 Apart from wounds in face and two hands,his legs were broken.
3 He has a lot of problems.All in all,he is a good actor.
4 You must answer for what you have said
5 They carried off one gold in the rowing game.
6 I can't wrap up the peace talk with just thirty pages
2 Apart from wounds in face and two hands,his legs were broken.
3 He has a lot of problems.All in all,he is a good actor.
4 You must answer for what you have said
5 They carried off one gold in the rowing game.
6 I can't wrap up the peace talk with just thirty pages
看了 英语翻译1每天少吸一点烟,你...的网友还看了以下:
已知函数f(x)在x=a处的导数为b,求limf(a+4△x)-f(a+5△x)/△x的值.(求大 2020-04-09 …
1题f(x)=-f(a-x)y=f(x)关于哪个点对称.2题f(x)=-f(a+x)y=f(x)以 2020-05-02 …
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无 2020-05-13 …
定义在[-1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[-1,1],a+b≠0时,有f 2020-07-20 …
已知f(x)对任意正数a,b都有f(ab)=f(a)+f(b),且当x>1时,f(x)>0(1)求 2020-07-27 …
如果函数f(x)在[a,b]上是增函数,且f(x)不等于0,那么对于任意的x1,X2属于[a,b] 2020-07-30 …
f(x)在(-∞,+∞)上是增函数,若a+b≤0则那么f(a)+f(b)≤-f(a)-f(b)f( 2020-08-01 …
设F包含于E为代数扩张,a∈E,证明存在F上不可约多项式f(x),使得f(a)=0书上全都是概念, 2020-08-02 …
谁帮我证明两个定理?1.余数定理:多项式f(x)除以x-a所得的余数等于f(a).2.因式定理:若 2020-08-02 …
a>b>0,c=√(1/a(a-b)),求证f(a)+f(c)>4/5√表示根号我又错了不好意思f( 2020-11-01 …