早教吧作业答案频道 -->数学-->
定义在[-1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[-1,1],a+b≠0时,有f(a)+f(b)a+b>0.(1)试问函数f(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直,若存在,求出A
题目详情
定义在[-1,1]上的奇函数f(x)满足f(1)=2,且当a,b∈[-1,1],a+b≠0时,有
>0.
(1)试问函数f(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直,若存在,求出A,B两点的坐标;若不存在,请说明理由并加以证明.
(2)若
f(x)≤m2+2am+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.
f(a)+f(b) |
a+b |
(1)试问函数f(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直,若存在,求出A,B两点的坐标;若不存在,请说明理由并加以证明.
(2)若
1 |
2 |
▼优质解答
答案和解析
(1)假设函数f(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,
则A、B两点的纵坐标相同,设它们的横坐标分别为 x1 和x2,且x1<x2.
则f(x1)-f(x2)=f(x1 )+f(-x2)=
[x1+(-x2)].
由于
>0,且[x1+(-x2)]<0,∴f(x1)-f(x2)<0,
故函数f(x)在[-1,1]上是增函数.
这与假设矛盾,故假设不成立,即 函数f(x)的图象上不存在两个不同的点A,B,使直线AB恰好与y轴垂直.
(2)由于
f(x)≤m2+2am+1对所有x∈[-1,1],a∈[-1,1]恒成立,
∴故函数f(x)的最大值小于或等于2(m2+2am+1).
由于由(1)可得,函数f(x)是[-1,1]的增函数,故函数f(x)的最大值为f(1)=2,
∴2(m2+2am+1)≥2,即 m2+2am≥0.
令关于a的一次函数g(a)=m2+2am,则有
,
解得 m≤-2,或m≥2,或 m=0,故所求的m的范围是{m|m≤-2,或m≥2,或 m=0}.
则A、B两点的纵坐标相同,设它们的横坐标分别为 x1 和x2,且x1<x2.
则f(x1)-f(x2)=f(x1 )+f(-x2)=
f(x1)+f(−x2) |
x1+(−x2) |
由于
f(x1)+f(−x2) |
x1+(−x2) |
故函数f(x)在[-1,1]上是增函数.
这与假设矛盾,故假设不成立,即 函数f(x)的图象上不存在两个不同的点A,B,使直线AB恰好与y轴垂直.
(2)由于
1 |
2 |
∴故函数f(x)的最大值小于或等于2(m2+2am+1).
由于由(1)可得,函数f(x)是[-1,1]的增函数,故函数f(x)的最大值为f(1)=2,
∴2(m2+2am+1)≥2,即 m2+2am≥0.
令关于a的一次函数g(a)=m2+2am,则有
|
解得 m≤-2,或m≥2,或 m=0,故所求的m的范围是{m|m≤-2,或m≥2,或 m=0}.
看了 定义在[-1,1]上的奇函数...的网友还看了以下:
如图点F为双曲线C的左焦点,左准线l交x轴于点Q,点P是l上的一点|PQ|=|FQ|=1,且线段P 2020-04-08 …
在Rt△ABC中,∠ACB=90°,∠ABC=45°,点E在线段BC上,射线ED⊥AB于点D.(1 2020-04-25 …
已知函数(x∈R).(1)已知点在f(x)的图象上,判断其关于点对称的点是否仍在f(x)的图象上; 2020-05-02 …
如图:点F为两个同心圆的圆心,AC等于6厘米,DE等于4厘米,DF等于8厘米,求阴影部分面积. 2020-05-17 …
如图,点F在正方形ABCD的CD边上,射线AF交BD于点E,过点c坐CH⊥CE,交FG于点H,证 2020-05-22 …
如图,点F在正方形ABCD的CD边上,射线AF交BD于点E,交BC的延长线于点G.(1)过点C作C 2020-05-22 …
如图,点F是三角形中AC边上的中点,AD平行BC,DF交AB于E,交BC延长线G.若BE比AE=3 2020-06-05 …
如图,PA是⊙O的切线,切点为A,割线PCB交⊙O于C、B两点,半径OD⊥BC,垂足为E,AD交P 2020-07-31 …
已知函数f(x)=1/4^x+2(x∈R).(1)已知点(1,1/6)在f(x)的图像上,判断其关于 2020-12-09 …
已知函数(x∈R).(1)已知点在f(x)的图象上,判断其关于点对称的点是否仍在f(x)的图象上;( 2020-12-09 …