早教吧作业答案频道 -->数学-->
由动点P(x,y)分别引圆O1:(x+2)^2+y^2=1和圆O2(x-3)^2+y^2=9的切线PA和PB(A,B为切点),满足PA的绝对值=√2PB的绝对值1.求动点P的轨迹C的方程2.当点P运动到y轴正半轴时,直线PB被轨迹C截得的线段为PQ,求PQ
题目详情
由动点P(x,y)分别引圆O1:(x+2)^2+y^2=1和圆O2(x-3)^2+y^2=9的切线PA和PB(A,B为切点),
满足PA的绝对值=√2PB的绝对值
1.求动点P的轨迹C的方程 2.当点P运动到y轴正半轴时,直线PB被轨迹C截得的线段为PQ,求PQ长
满足PA的绝对值=√2PB的绝对值
1.求动点P的轨迹C的方程 2.当点P运动到y轴正半轴时,直线PB被轨迹C截得的线段为PQ,求PQ长
▼优质解答
答案和解析
(1)∵│PA│=√2│PB│
而│PA│=│PO1│²-│O1A│²,│PB│=│PO2│²-│O2A│²,
∴√[(x+2)²+y²-1]=√2√[(x-3)²+y²-9]
∴x²+y²-16x-3=0
(x-8)²+y²=67
∴P的轨迹是圆心为(8,0),半径为√67的圆
(2)令x=0,y=±√3
∵P运动到y轴正半轴
∴P(0,√3)
①当直线PB斜率存在时,设为y=kx+√3
∴│O2B│=│3k+√3│/√(k²+1)=3
∴k=√3/3
圆心(8,0)到PB的距离为
d=│8k+√3│/√(k²+1)=(8×√3/3+√3)/√(1+1/3)=11/2
∴│PQ│=2√[67-(11/2)²]=7√3
②当直线PB斜率不存在时,
当x=0时,8²+y²=67,y=±√3
∴│PQ│=2√3
综上可知:│PQ│=2√3或7√3
而│PA│=│PO1│²-│O1A│²,│PB│=│PO2│²-│O2A│²,
∴√[(x+2)²+y²-1]=√2√[(x-3)²+y²-9]
∴x²+y²-16x-3=0
(x-8)²+y²=67
∴P的轨迹是圆心为(8,0),半径为√67的圆
(2)令x=0,y=±√3
∵P运动到y轴正半轴
∴P(0,√3)
①当直线PB斜率存在时,设为y=kx+√3
∴│O2B│=│3k+√3│/√(k²+1)=3
∴k=√3/3
圆心(8,0)到PB的距离为
d=│8k+√3│/√(k²+1)=(8×√3/3+√3)/√(1+1/3)=11/2
∴│PQ│=2√[67-(11/2)²]=7√3
②当直线PB斜率不存在时,
当x=0时,8²+y²=67,y=±√3
∴│PQ│=2√3
综上可知:│PQ│=2√3或7√3
看了 由动点P(x,y)分别引圆O...的网友还看了以下:
动点M到定点A(m,0)(m>0)的距离比到y轴的距离大m,则动点的轨迹方程为?当x大于等于0时,轨 2020-03-30 …
指数函数值域指数函数y=log2(3-x2)以2为底以3-x的平方是x的平方不是3-x的为真数求定 2020-05-02 …
中国古代数学名著《九章算术》中记载了公元前344年商鞅造的一种标准量器--商鞅铜方升,其三视图如图 2020-05-15 …
中国古代数学著《九章算术》中记载了公元前344年商鞅督造一种标准量器--商鞅铜方升,其三视图如图所 2020-05-15 …
设向量a=(x+1,y),b=(x-1,y),点P(x,y)为动点设向量a=(x+1,y),b=( 2020-06-03 …
已知动圆C与圆C1:(x+1)2+y2=1相外切,与圆C2:(x−1)2+y2=9相内切,设动圆圆 2020-07-09 …
求抛物线y^2=x的一组斜率为2的平行弦的中点的轨迹方程求具体过程。为什么结果x>1/8?而不求抛 2020-07-11 …
已知A1A2为圆X*X+y*y=1与X轴的两个交点,p1p2为垂直于X轴的弦,且A1p1与A2p2 2020-07-13 …
高数求导(e^(-x))'怎么变成=-e^(-x)的?为什么会有负号呢 2020-07-19 …
有一个数值转换器,原理如下:当输入x的为36时,输出的y是()A.6B.6C.−6D.±6 2020-11-06 …