早教吧作业答案频道 -->数学-->
已知函数f(x)=a^x满足条件:当x∈(-∞,0)时,f(x)>1:当x∈(0,1]时,不等式f(3mx-1)>f(1+mx-x^2)恒成立
题目详情
已知函数f(x)=a^x满足条件:当x∈(-∞,0)时,f(x)>1:当x∈(0,1]时,不等式f(3mx-1)>f(1+mx-x^2)恒成立
▼优质解答
答案和解析
是否是求m 的取值范围?若是,则:
函数f(x)=a^x满足条件:当x∈(-∞,0)时,f(x)>1→0当x∈(0,1]时,不等式f(3mx-1)>f(1+mx-x^2)恒成立→3mx-1<1+mx-x^2 的解集包含(0,1)
3mx-1<1+mx-x^2 → x^2+2mx-2<0
-m-√(m^2+2)≤0 -m+√(m^2+2)≤0 → √(m^2+2)≥-m → m∈R (因为 √(m^2+2)>√m^2=|m|≥-m)
1≤-m+√(m^2+2) → √(m^2+2)≥1+m → m^2+2≥m^2+2m+1 → 2m≤1 → m≤1/2
令:g(x)=x^2+2mx-2, g(0)=-2<0 ,因此,只要,g(1)≤0,即可(观察利用二次函数的图像),
g(1)=1+2m-2<0 → m≤1/2
函数f(x)=a^x满足条件:当x∈(-∞,0)时,f(x)>1→0当x∈(0,1]时,不等式f(3mx-1)>f(1+mx-x^2)恒成立→3mx-1<1+mx-x^2 的解集包含(0,1)
3mx-1<1+mx-x^2 → x^2+2mx-2<0
-m-√(m^2+2)≤0
1≤-m+√(m^2+2) → √(m^2+2)≥1+m → m^2+2≥m^2+2m+1 → 2m≤1 → m≤1/2
令:g(x)=x^2+2mx-2, g(0)=-2<0 ,因此,只要,g(1)≤0,即可(观察利用二次函数的图像),
g(1)=1+2m-2<0 → m≤1/2
看了 已知函数f(x)=a^x满足...的网友还看了以下:
若对任意的K在[-1,1]上,函数f(x)=x^2+(K-4)x2k+4的最小值为正数,求x的值. 2020-04-26 …
f(x)=ax^2+bx+c满足f(-1)=0,x属于R恒有f(x)大于等于x,x属于0,2时,f 2020-05-23 …
若函数f(x)满足f(x+y)=f(x)+f(y)(x,y属于R),则下列各式不恒成立的是A.若函 2020-06-12 …
已知函数f(x)=m•2x+2•3x,m∈R.(1)当m=-9时,求满足f(x+1)>f(x)的实 2020-06-12 …
若函数f(x)定义域内有两个任意实数x1,x2(x1≠x2),若f(x1+x22)<f(x1)+f 2020-07-02 …
设函数f(x)=aˆx满足条件:当x∈(-∞,0)时,f(x)>1;当x∈(0,1)时,不等式f( 2020-07-09 …
函数f(x)=(m2-m-1)x4m9-m5-1是幂函数,对任意x1,x2∈(0,+∞),且x1≠ 2020-07-13 …
已知函数f(x)=x2+(lga+2)x+lgb满足f(-1)=-2,且对于任意x∈R恒有f(x)≥ 2020-11-01 …
数学分析习题设函数f的定义域为R,不恒为0,且对一切x,y∈R满足①f(x+y)=f(x)+f(y) 2020-11-20 …
高等数学的一个小困惑(欢迎高手)已知函数f(x)在[m,n]上连续,且恒有f'(x)>0,f(m)= 2020-12-31 …