早教吧作业答案频道 -->数学-->
数列{an}是等差数列,已知a1=19,d=-2,Sn为{an}的前n项和①求通项an及Sn②若{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn
题目详情
数列{an}是等差数列,已知a1=19,d=-2,Sn为{an}的前n项和
①求通项an及Sn
②若{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn
①求通项an及Sn
②若{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn
▼优质解答
答案和解析
分析:你应知道等差数列的通项公式和前N项和公式:an=a1+(n-1)d sn=na1+n(n-1)d/2及等比数列的通项公式和前N项和公式:
(1)由公式得:an=19-2(n-1)=21-2n,Sn=19n+n(n-1)/2×(-2)=20n-n²
(2)bn-an=3^(n-1),∴bn=3^(n-1)+21-2n
Tn=b1+b2+b3+b4+……bn
=(3^0+21-2×1)+(3^1+21-2×2)+(3²+21-2×3)+(3³+21-2×4)+.+(3^(n-1)+21-2×(n-1))
=(3^0+3^1+3²+3³+.3^(n-1))+[(21-2×1)+(21-2×2)+(21-2×3)+(21-2×4)+.+(21-2×(n-1))]
前一个括号是等比数列,后一个括号是an的前n项和
=1(1-3^n)/(-2)+20n-n²
=3^n/2-n²+20n-1/2
(1)由公式得:an=19-2(n-1)=21-2n,Sn=19n+n(n-1)/2×(-2)=20n-n²
(2)bn-an=3^(n-1),∴bn=3^(n-1)+21-2n
Tn=b1+b2+b3+b4+……bn
=(3^0+21-2×1)+(3^1+21-2×2)+(3²+21-2×3)+(3³+21-2×4)+.+(3^(n-1)+21-2×(n-1))
=(3^0+3^1+3²+3³+.3^(n-1))+[(21-2×1)+(21-2×2)+(21-2×3)+(21-2×4)+.+(21-2×(n-1))]
前一个括号是等比数列,后一个括号是an的前n项和
=1(1-3^n)/(-2)+20n-n²
=3^n/2-n²+20n-1/2
看了 数列{an}是等差数列,已知...的网友还看了以下:
已知数列{an},如果数列{bn}满足b1=a1,bn=an+a(n-1)则称数列{bn}是数列{ 2020-04-05 …
已知数列{an}和{bn}是公比不相等的两个等比数列.cn=an+bn,证明:数列{cn}不是等比 2020-05-15 …
高分求答.在线等.要过程!已知数列{an}的通项公式是an=2n/3n+1,那么这个数列是A递增数 2020-05-22 …
已知数列{an}中,a1=3,a3=9.数列{bn}是等差数列.bn=log2(an-1).(1) 2020-06-04 …
1)已知数列{an}满足a1=1,n≥2时,an-1-an=2an-1an,求通项公式an2)已知 2020-06-11 …
已知数列{bn}是等差数列,b1=1,b1+b2+...+b10=100.(1)求数列{bn}的通 2020-06-27 …
已知数列an满足a1=7/3,a(n+1)=3a(n)-4n+2(1)求a2,a3的值(2)证明数 2020-07-09 …
(1/2)已知数列an的前n项和为Sn,且Sn=n^2.数列bn为等比数列,且b1=1,b4=8. 2020-07-09 …
已知数列{An}满足A1=a,A(n+1)=1+1/An,我们知道当a取不同的值时高考数列问题求解 2020-08-02 …
已知数列{an}的通项公式为an=(-1)的n-1次方n+3分之n,则a7=已知数列an=n(3n- 2020-10-31 …