早教吧作业答案频道 -->数学-->
已知数列{a(n)}中,a(1)=2,a(n)-a(n-1)-2n=0(n≥2,n∈N),设Bn=1/a(n+1)+1/a(n+2)+1/a(n+3已知数列{a(n)}中,a(1)=2,a(n)-a(n-1)-2n=0(n≥2,n∈N).设Bn=1/a(n+1)+1/a(n+2)+1/a(n+3)+……+1/a(2
题目详情
已知数列{a(n)}中,a(1)=2,a(n)-a(n-1)-2n=0(n≥2,n∈N),设Bn=1/a(n+1)+1/a(n+2)+1/a(n+3
已知数列{a(n)}中,a(1)=2,a(n)-a(n-1)-2n=0(n≥2,n∈N).设Bn=1/a(n+1)+1/a(n+2)+1/a(n+3)+……+1/a(2n),若对任意的正整数n,当m∈【-1,1】时,不等式t^2-2mt+1/6>Bn恒成立,求实数t的取值范围
已知数列{a(n)}中,a(1)=2,a(n)-a(n-1)-2n=0(n≥2,n∈N).设Bn=1/a(n+1)+1/a(n+2)+1/a(n+3)+……+1/a(2n),若对任意的正整数n,当m∈【-1,1】时,不等式t^2-2mt+1/6>Bn恒成立,求实数t的取值范围
▼优质解答
答案和解析
a(n)-a(n-1)-2n=0
=>
an=a(n-1)+2n
=a(n-2)+2(n-1)+2n)
=a1+2*(2+3+..+n)
=2+(n-1)(n+2)
=n(n+1)
Bn=1/a(n+1)+1/a(n+2)+...+1/a(2n)
=1/(n+1)(n+2)+1/(n+2)(n+3)+...+1/2n*(2n+1)
=1/(n+1)-1/(n+2)+...+1/(2n)-1/(2n+1)
=1/(n+1)-1/(2n+1)
=n/((n+1)(2n+1))
=n/(2n^2+3n+1)
=1/(2n+1/n+3)
又
2n+1/n+3>=2+1+3=6 (n=1时取等号)
=》BnBn恒成立,则需要:
t^2-2mt+1/6>1/6
=>t(t-2m)>0
又-2
=>
an=a(n-1)+2n
=a(n-2)+2(n-1)+2n)
=a1+2*(2+3+..+n)
=2+(n-1)(n+2)
=n(n+1)
Bn=1/a(n+1)+1/a(n+2)+...+1/a(2n)
=1/(n+1)(n+2)+1/(n+2)(n+3)+...+1/2n*(2n+1)
=1/(n+1)-1/(n+2)+...+1/(2n)-1/(2n+1)
=1/(n+1)-1/(2n+1)
=n/((n+1)(2n+1))
=n/(2n^2+3n+1)
=1/(2n+1/n+3)
又
2n+1/n+3>=2+1+3=6 (n=1时取等号)
=》BnBn恒成立,则需要:
t^2-2mt+1/6>1/6
=>t(t-2m)>0
又-2
看了 已知数列{a(n)}中,a(...的网友还看了以下:
数列和函数高手~求救!已知,函数f(x)=(x+3)/(x+1),(x不等于1)数列An满足数列A 2020-04-12 …
1.已知数列{an}中,a(1)=1,a(2)=6,a(n+2)=a(n+1)-a(n),则a(2 2020-05-14 …
若数列a是等差数列,且1/a也是等差数列,求a的通项 2020-05-21 …
二次递推式求通项数列A1=1,A(n+1)=(An)2-2其中(An)2表示An平方.求An.请高 2020-07-21 …
1.已知数列(an)满足a1=1/5,且当n≥2时,有a[n-1]/a[n]=(2a[n-1]+1 2020-07-30 …
数列{an}是公比为q的等比数列,a1=1,a小n加2=2分之a小n加1加a小n(n属于N)求{b 2020-07-30 …
用辅助数列法解等差数列题也就是要用递推公式推出来,用辅助数列法1、已知数列{an}的首项a(1)= 2020-08-01 …
一个n阶矩阵A,主对角线上都是1,其他都是a,怎么化简成(n-1)a+1乘以一个一行1,一列0,1 2020-08-02 …
已知数列{An}满足A1=a,A(n+1)=1+1/An,我们知道当a取不同的值时高考数列问题求解 2020-08-02 …
三角比的题目三角形ABC中边a,b,c分别为角A.B.C所对的边,已知A.B.C成等差数列且1/a 2020-08-03 …