早教吧作业答案频道 -->数学-->
设AB是圆Cx^2+y^2-2x+4y=0上两个不同的点向量a=CA向量b=CB|AB|=根号3若向量ab具有关系|ka+b|=根号3|a-kb|(k>0),求向量ab夹角的取值范围.
题目详情
设AB是圆Cx^2+y^2-2x+4y=0上两个不同的点 向量a=CA 向量b=CB |AB|=根号3
若向量a b 具有关系|ka+b|=根号3|a-kb|(k>0) ,求向量a b 夹角的取值范围.
若向量a b 具有关系|ka+b|=根号3|a-kb|(k>0) ,求向量a b 夹角的取值范围.
▼优质解答
答案和解析
圆Cx²+y²-2x+4y=0方程可化为:(x-1)²+(y+2)²=5
则其圆心C坐标为(1,-2),半径为r=√5
易知:|a|=|b|=r=√5
又|ka+b|=√3*|a-kb|
则:|ka+b|²=(√3*|a-kb|)²
即:k²|a|²+2ka·b+|b|²=3(|a|²-2ka·b+k²|b|²)
移项整理得:8ka·b=(3-k²)|a|²+(3k²-1)|b|²=10k²+10
即:a·b=5(k+1/k)/4
则由向量数量积公式得:
cos=(a·b)/(|a|*|b|)=[5(k+1/k)/4]/25=(k+1/k)/20
因为k>0,1/k>0,所以由均值定理得:
k+(1/k)≥2√(k*1/k)=2,(当且仅当k=1/k,即k=1时取等号)
所以:(k+1/k)/20≥1/10
即:cos≥1/10
又∈[0,π]
所以:0≤≤arccos(1/10)
即:向量a b 夹角的取值范围为:[ 0,arccos(1/10) ]
则其圆心C坐标为(1,-2),半径为r=√5
易知:|a|=|b|=r=√5
又|ka+b|=√3*|a-kb|
则:|ka+b|²=(√3*|a-kb|)²
即:k²|a|²+2ka·b+|b|²=3(|a|²-2ka·b+k²|b|²)
移项整理得:8ka·b=(3-k²)|a|²+(3k²-1)|b|²=10k²+10
即:a·b=5(k+1/k)/4
则由向量数量积公式得:
cos=(a·b)/(|a|*|b|)=[5(k+1/k)/4]/25=(k+1/k)/20
因为k>0,1/k>0,所以由均值定理得:
k+(1/k)≥2√(k*1/k)=2,(当且仅当k=1/k,即k=1时取等号)
所以:(k+1/k)/20≥1/10
即:cos≥1/10
又∈[0,π]
所以:0≤≤arccos(1/10)
即:向量a b 夹角的取值范围为:[ 0,arccos(1/10) ]
看了 设AB是圆Cx^2+y^2-...的网友还看了以下:
设A是3阶是对阵矩阵,特征值是2,2,3,属于特征值3的特征向量是a1=(111)^T.求矩阵A. 2020-04-13 …
已知向量a向量=(3,-2),b向量=(4,1)(1)分别求a向量乘以b向量和a向量加b向量的绝对 2020-05-13 …
三道向量(数列)的题 急1,b向量=(x2,y2) b向量的平方可不可以写成(x2^2,y2^2) 2020-05-16 …
科学实验题混合后的变化1、将三个烧杯依次编号为1、2、3.2、向1号杯中加入10毫升的醋,再加入一 2020-06-11 …
A为3维行向量,B为3维列向量,A,B满足A*B=2,则矩阵B*A的非零特征值为答案的解法是设C= 2020-06-20 …
3阶实对称矩阵3个特征值是λ1=λ2=1,λ3=-1向量a1=(1,1,1)ta2=(2,2,1) 2020-06-22 …
设向量组α1=(1,1,1,3)^T,α2=(-1,-3,5,1)^T,α3=(3,2,-1,p+ 2020-06-30 …
设3阶实对数矩阵A的特征值是1,2,3,矩阵A属于特征值1,2的特征向量分别急求设3阶实对数矩阵A 2020-07-22 …
已知向量a=(3,2),向量b=(-1,2),向量c=(4,1)(1)求满足向量a=x向量b+y向 2020-07-30 …
已知向量a=(1,2),b=(-3,2)(1)求向量a+向量b的绝对值和向量a-向量b的绝对值已知向 2020-11-30 …