早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设AB是圆Cx^2+y^2-2x+4y=0上两个不同的点向量a=CA向量b=CB|AB|=根号3若向量ab具有关系|ka+b|=根号3|a-kb|(k>0),求向量ab夹角的取值范围.

题目详情
设AB是圆Cx^2+y^2-2x+4y=0上两个不同的点 向量a=CA 向量b=CB |AB|=根号3
若向量a b 具有关系|ka+b|=根号3|a-kb|(k>0) ,求向量a b 夹角的取值范围.
▼优质解答
答案和解析
圆Cx²+y²-2x+4y=0方程可化为:(x-1)²+(y+2)²=5
则其圆心C坐标为(1,-2),半径为r=√5
易知:|a|=|b|=r=√5
又|ka+b|=√3*|a-kb|
则:|ka+b|²=(√3*|a-kb|)²
即:k²|a|²+2ka·b+|b|²=3(|a|²-2ka·b+k²|b|²)
移项整理得:8ka·b=(3-k²)|a|²+(3k²-1)|b|²=10k²+10
即:a·b=5(k+1/k)/4
则由向量数量积公式得:
cos=(a·b)/(|a|*|b|)=[5(k+1/k)/4]/25=(k+1/k)/20
因为k>0,1/k>0,所以由均值定理得:
k+(1/k)≥2√(k*1/k)=2,(当且仅当k=1/k,即k=1时取等号)
所以:(k+1/k)/20≥1/10
即:cos≥1/10
又∈[0,π]
所以:0≤≤arccos(1/10)
即:向量a b 夹角的取值范围为:[ 0,arccos(1/10) ]