早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和为Sn,且Sn=2an-n(n属于N*)(1)求数列an的通项公式(2)设bn=log2(an+1)且对任意的n属N*都有b2/b1*b3/b2*b4/b3*...*bn+1/bn≥K√n成立,求K的最大值
题目详情
已知数列{an}的前n项和为Sn,且Sn=2an-n(n属于N*) (1)求数列an的通项公式
(2)设bn=log2(an+1)且对任意的n属N*都有b2/b1*b3/b2*b4/b3*...*bn+1/bn≥K√n成立,求K的最大值
(2)设bn=log2(an+1)且对任意的n属N*都有b2/b1*b3/b2*b4/b3*...*bn+1/bn≥K√n成立,求K的最大值
▼优质解答
答案和解析
∵Sn=2an-n
∴S1=a1=2a1-1
∴a1=1
S(n+1)=2a(n+1)-(n+1)
∴a(n+1)=S(n+1)-Sn=2a(n+1)-(n+1)-2an+n
∴a(n+1)=2an+1
a(n+1)+1=2(an+1)
∴[a(n+1)+1]/(an+1)=2
∴{an+1}是等比数列,公比为2
∴an+1=(a1+1)*2^(n-1)=2^n
∴an=2^n-1
(2)
bn=log₂(an+1)=log₂2^n=n
设Tn=b2/b1*b3/b2*b4/b3*...*bn+1/bn
=b(n+1)/b1=n+1
n+1≥k√n
k≤√n+1/√n
∵√n+1/√n≥2
∴k≤2
第2问好像有问题吧
∴S1=a1=2a1-1
∴a1=1
S(n+1)=2a(n+1)-(n+1)
∴a(n+1)=S(n+1)-Sn=2a(n+1)-(n+1)-2an+n
∴a(n+1)=2an+1
a(n+1)+1=2(an+1)
∴[a(n+1)+1]/(an+1)=2
∴{an+1}是等比数列,公比为2
∴an+1=(a1+1)*2^(n-1)=2^n
∴an=2^n-1
(2)
bn=log₂(an+1)=log₂2^n=n
设Tn=b2/b1*b3/b2*b4/b3*...*bn+1/bn
=b(n+1)/b1=n+1
n+1≥k√n
k≤√n+1/√n
∵√n+1/√n≥2
∴k≤2
第2问好像有问题吧
看了 已知数列{an}的前n项和为...的网友还看了以下:
一个不等式证明已知n∈N+,求证:(2n+1)^n≥(2n)^n+(2n-1)^n下面是我的证明, 2020-05-13 …
(1)已知x>-1,n∈N*,求证:(1+x)n≥1+nx(2)已知m>0,n∈N*,ex≥m+n 2020-05-17 …
1、等比数列中,知道a3=1,S3=13,怎么得出q=1/3?2、已知nS(n+1)>(n+1)S 2020-06-04 …
已知N,N/T2-N/T1=1怎么求T2/T1?如题,N为已知.答案貌似是N/(N-1),(但我个 2020-06-22 …
已知两个等差数列{an}与{bn},它的前n项和分别为Sn、S”n,已知Sn/S'n=n+3/n+ 2020-07-09 …
已知n∈N*,数列{an}的各项为正数,前n项的和为Sn,且a1=1,a2=2,设bn=a2n-1 2020-07-28 …
根据下列给定的条件求正n边形的边数n(1)已知正n边形的外角等于内角(2)已知正n边形的外角大于内 2020-07-30 …
已知n∈N*,在(x+2)n的展开式中,第二项系数是第三项系数的15.(1)求n的值;(2)求展开 2020-08-03 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
S(n)是数列{a(n)}的前n项和,已知4S(n)=a(n)^2+2a(n)-3.求a(n)通项S 2020-12-17 …