早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}的前n项和为Sn,且Sn=2an-n(n属于N*)(1)求数列an的通项公式(2)设bn=log2(an+1)且对任意的n属N*都有b2/b1*b3/b2*b4/b3*...*bn+1/bn≥K√n成立,求K的最大值

题目详情
已知数列{an}的前n项和为Sn,且Sn=2an-n(n属于N*) (1)求数列an的通项公式
(2)设bn=log2(an+1)且对任意的n属N*都有b2/b1*b3/b2*b4/b3*...*bn+1/bn≥K√n成立,求K的最大值
▼优质解答
答案和解析
∵Sn=2an-n
∴S1=a1=2a1-1
∴a1=1
S(n+1)=2a(n+1)-(n+1)
∴a(n+1)=S(n+1)-Sn=2a(n+1)-(n+1)-2an+n
∴a(n+1)=2an+1
a(n+1)+1=2(an+1)
∴[a(n+1)+1]/(an+1)=2
∴{an+1}是等比数列,公比为2
∴an+1=(a1+1)*2^(n-1)=2^n
∴an=2^n-1
(2)
bn=log₂(an+1)=log₂2^n=n
设Tn=b2/b1*b3/b2*b4/b3*...*bn+1/bn
=b(n+1)/b1=n+1
n+1≥k√n
k≤√n+1/√n
∵√n+1/√n≥2
∴k≤2
第2问好像有问题吧