早教吧作业答案频道 -->数学-->
已知数列an是公差大于零的等差数列,数列{bn}为等比数列,且a1=1,b1=2,b2-a2=1,a3+b3=13求数列{an}和{bn}的通项公式设cn=anbn,求数列{cn}的前n项和Tn
题目详情
已知数列an是公差大于零的等差数列,数列{bn}为等比数列,且a1=1,b1=2,b2-a2=1,a3+b3=13
求数列{an}和{bn}的通项公式
设cn=anbn,求数列{cn}的前n项和Tn
求数列{an}和{bn}的通项公式
设cn=anbn,求数列{cn}的前n项和Tn
▼优质解答
答案和解析
a(n) = 1 + (n-1)d,d>0.
b(n) = 2q^(n-1).
1 = b(2) - a(2) = 2q - (1+d),d = 2q-2.由01.
13 = a(3) + b(3) = 1 + 2d + 2q^2 = 1 + 2(2q-2) + 2q^2,
0 = 2q^2 + 4q - 16 = 2(q^2 + 2q - 8) = 2(q+4)(q-2),q = 2.
d = 2(q-1) = 2.
a(n) = 1 + 2(n-1) = 2n-1.
b(n) = 2^n.
c(n) = a(n)b(n) = (2n-1)2^n.
t(n) = c(1) + c(2) + ...+ c(n-1) + c(n)
= (2*1-1)2 + (2*2-1)2^2 + ...+ [2(n-1)-1]2^(n-1) + (2n-1)2^n,
2t(n) = (2*1-1)2^2 + ...+ [2(n-1)-1]2^n + (2n-1)2^(n+1),
t(n) = 2t(n) - t(n) = -(2*1-1)2 -2*2^2 - ...- 2*2^n + (2n-1)2^(n+1)
= (2n-1)2^(n+1) + 4 - 2 - 2*2 - 2*2^2 - ...- 2*2^n
= (2n-1)2^(n+1) + 4 - 2[1 + 2 + 2^2 + ...+ 2^n]
= (2n-1)2^(n+1) + 4 - 2[2^(n+1) - 1]/(2-1)
= (2n-1)2^(n+1) + 4 - 2*2^(n+1) + 2
= (2n-3)2^(n+1) + 6
b(n) = 2q^(n-1).
1 = b(2) - a(2) = 2q - (1+d),d = 2q-2.由01.
13 = a(3) + b(3) = 1 + 2d + 2q^2 = 1 + 2(2q-2) + 2q^2,
0 = 2q^2 + 4q - 16 = 2(q^2 + 2q - 8) = 2(q+4)(q-2),q = 2.
d = 2(q-1) = 2.
a(n) = 1 + 2(n-1) = 2n-1.
b(n) = 2^n.
c(n) = a(n)b(n) = (2n-1)2^n.
t(n) = c(1) + c(2) + ...+ c(n-1) + c(n)
= (2*1-1)2 + (2*2-1)2^2 + ...+ [2(n-1)-1]2^(n-1) + (2n-1)2^n,
2t(n) = (2*1-1)2^2 + ...+ [2(n-1)-1]2^n + (2n-1)2^(n+1),
t(n) = 2t(n) - t(n) = -(2*1-1)2 -2*2^2 - ...- 2*2^n + (2n-1)2^(n+1)
= (2n-1)2^(n+1) + 4 - 2 - 2*2 - 2*2^2 - ...- 2*2^n
= (2n-1)2^(n+1) + 4 - 2[1 + 2 + 2^2 + ...+ 2^n]
= (2n-1)2^(n+1) + 4 - 2[2^(n+1) - 1]/(2-1)
= (2n-1)2^(n+1) + 4 - 2*2^(n+1) + 2
= (2n-3)2^(n+1) + 6
看了 已知数列an是公差大于零的等...的网友还看了以下:
a2=b+2,b2=a+2(a≠b),求:a3-2ab+b3 a2=b+2,b2=a+2(a≠b) 2020-05-13 …
1、若(3b-2)^2+|2a-b-3|=0,求5(2a-b)-2(6a-2b+2)+(4a-3b 2020-05-13 …
因式分解a3(b-c)+b3(c-a)+c3(a-b)如果用待定系数法解,得a3(b-c)+b3( 2020-05-16 …
设a,b,c为满足a+b+c=1的正实数,证明:a3√1+b-c+b3√1+c-a+c3√1+a- 2020-05-16 …
一般情况下a2+b3=a+b2+3不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得a2 2020-06-11 …
设5+15−1的整数部分为a,小数部分为b,(1)求a,b;(2)求a2+b2+ab2;(3)求l 2020-07-09 …
已知:a3+b3=26,a2b-ab2=-l2,求(a3-b3)+(4ab2-2a2b)-2(ab 2020-07-09 …
一般情况下a3+b6=a+b3+6不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得a3 2020-07-09 …
已知集合A={x|x²+(a-1)x-a>o},B={x|x²+(a+b)x+abo,a≠b},M 2020-07-30 …
EXCEL中如何解决A,A1,A2,A3,A4,.B,B1,B2,B3,B4,.C,C1,C2,C3 2020-10-31 …