早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设数列{an}满足:a1=1,an+1=3an,n∈N*.设Sn为数列{bn}的前n项和,已知b1≠0,2bn-b1=S1•Sn,n∈N*(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)设cn=bn•log3an,求数列{cn}的前n项和Tn;(Ⅲ)证明:对

题目详情
设数列{an}满足:a1=1,an+1=3an,n∈N*.设Sn为数列{bn}的前n项和,已知b1≠0,2bn-b1=S1•Sn,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=bn•log3an,求数列{cn}的前n项和Tn
(Ⅲ)证明:对任意n∈N*且n≥2,有
1
a2-b2
+
1
a3-b3
+…+
1
an-bn
<
3
2
▼优质解答
答案和解析
(Ⅰ)∵an+1=3an,∴{an}是公比为3,首项a1=1的等比数列,
∴通项公式为an=3n-1.…(2分)
∵2bn-b1=S1•Sn,∴当n=1时,2b1-b1=S1•S1
∵S1=b1,b1≠0,∴b1=1. …(3分)
∴当n>1时,bn=Sn-Sn-1=2bn-2bn-1,∴bn=2bn-1
∴{bn}是公比为2,首项a1=1的等比数列,
∴通项公式为bn=2n-1.…(5分)
(Ⅱ)cn=bn•log3an=2n-1log33n-1=(n-1)2n-1,…(6分)
Tn=0•20+1•21+2•22+…+(n-2)2n-2+(n-1)2n-1…①
2Tn=0•21+1•22+2•23+…+(n-2)2n-1+(n-1)2n…②
①-②得:-Tn=0•20+21+22+23+…+2n-1-(n-1)2n
=2n-2-(n-1)2n=-2-(n-2)2n
∴Tn=(n-2)2n+2.  …(10分)
(Ⅲ)
1
an-bn
=
1
3n-1-2n-1
=
1
3•3n-2-2n-1
=
1
3n-2+2(3n-2-2n-2)
1
3n-2
+
1
a2-b2
+
1
a3-b3
+…+
1
an-bn

<
1
30
+
1
31
+…+
1
3n-2
=
1-(
1
3
)n-1
1-
1
3

=
3
2
(1-
1
3n-1
)<
3
2
. …(14分)